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We predict stand basal area (BA) from small footprint LiDAR data in 129 one-ha tropical forest plots across
four sites in French Guiana and encompassing a great diversity of forest structures resulting from natural
(soil and geological substrate) and anthropogenic effects (unlogged and logged forests). We use predictors
extracted from the Canopy Height Model to compare models of varying complexity: single or multiple regres-
sions and nested models that predict BA by independent estimates of stem density and quadratic mean diam-
eter. Direct multiple regression was the most accurate, giving a 9.6% Root Mean Squared Error of Prediction
(RMSEP). The magnitude of the various errors introduced during the data collection stage is evaluated and
their contribution to MSEP is analyzed. It was found that these errors accounted for less than 10% of model
MSEP, suggesting that there is considerable scope for model improvement. Although site-specific models
showed lower MSEP than global models, stratification by site may not be the optimal solution. The key to fu-
ture improvement would appear to lie in a stratification that captures variations in relations between LiDAR
and forest structure.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Tropical forests offer a broad range of ecosystem services, from
carbon sequestration to potential valuation of biodiversity compo-
nents. But, forest conversion in the tropics has dramatically altered
these services, and socio-demographic models predict that extensive
tropical forest basins will undergo significant change in the coming
decades (Wright, 2010). Although claims have long been made that
these alterations will have an irreversible impact on ecosystem resil-
ience and biodiversity conservation, it is only recently that studies
have sought to quantify the real impact of these alterations on a glob-
al scale (Gibson et al., 2011). The international community is now
aware of the serious consequences of tropical forest alteration on
human welfare, partly thanks to issues connected with global climate
change. A new round of international negotiations is being conducted
under the UN Framework Convention on Climate Change (UNFCCC)
with the aim of addressing a broad range of climate-related issues.
One key focus is on developing policy-based incentives to mitigate
forest degradation or clearing at the intergovernmental scale, and is
called the REDD mechanism (Reducing Emissions by Deforestation
/PS2, 34398 Montpellier cedex

.
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and Degradation). In its role as a framework for these negotiations,
the Bali plan required a number of actions to be “measurable, report-
able and verifiable”, and this prompted renewed interest in providing
standardized and reproducible methods of forest structure measure-
ment on a regional and global scale.

Of all the different monitoring procedures available, remotely
sensed techniques have received the most attention for they poten-
tially offer a detailed spatial description of forest status. Airborne- or
satellite-borne light detection and ranging (LiDAR) has particular rel-
evance in areas of high Above Ground Biomass (AGB>250 Mg ha−1)
where other remote sensing techniques, namely radar, provide only
low resolution due to signal saturation (Le Toan et al., 2011). Efforts
are also currently ongoing to combine radar and LiDAR data to
improve the large-scale prediction of forest structure (Sun et al.,
2011). LiDAR is an active remote sensing technology that measures
distance by means of reflected laser light. In airborne laser scanning,
the downward high-frequency emission of small footprint—typically
sub meter—laser pulses from an airborne platform provides accurate
data on the position of obstacles below, and a dense pattern of signal
returns is obtained by the instrument's side-to-side sweep (scanning).
Large airborne footprint (typically decameter) systems such as SLICER
(Harding et al., 2001) and LVIS (Blair et al., 1999) are also used, as are
space-borne systems such as GLAS (Zwally et al., 2002) that record a
vertical profile of the returned laser energy from its footprint. Several
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studies have demonstrated that LiDAR-derived metrics provide an
accurate estimate of canopy forest structure (Asner et al., 2010;
Hudak et al., 2009). However, the degree to which the relation be-
tween LiDAR metrics—that depend on sensor type—and forest struc-
ture varies across sites and forest types is poorly documented. For
instance, Drake et al. (2003) showed that the relationship between a
large footprint LiDAR-derived forest metric, the height of median en-
ergy (a proxy for mean canopy height), and AGB, differed between a
seasonalmoist forest in Panama and awet forest in Costa Rica. Recent-
ly, Saatchi et al. (2011) produced a global AGB map of tropical forests
based on a satellite-borne LiDAR instrument (Geoscience Laser Altim-
eter System, GLAS, onboard the Ice, Cloud, and land Elevation Satellite,
acquired in 2003 and 2004). GLAS acquisitions were regressed with
ground-based Lorey's height (basal area weighted height of all trees
>10 cm in diameter). Allometric relations between Lorey's height
and AGB of calibration plots differed significantly in Central and
South America, in Africa, and in South-East Asia. This further suggests
that the relationship between LiDAR-derived metrics and forest char-
acteristics are site-dependent.

Conversely, in their study that pioneered the application of large
footprint full wave LiDAR (SLICER) in forest AGB predictions, Lefsky
et al. (2002) concluded that the relationship between LiDAR metrics
and AGB was stable across different biomes. In this they focused
on three forest types: temperate deciduous, temperate coniferous
and boreal forest. Their regression model used mean canopy height
squared and the product of canopy cover and canopy height as pre-
dictors. Separate regressions by forest type did not significantly
improve predictions. However, their conclusion may stem from the
marked uncertainty of the predictions reported in their study and
the limited statistical power of the analysis: the estimated residual
error (digitized data from Fig. 2 in (Lefsky et al., 2002)) was about
70 Mg ha−1 or 22%. This large residual error may be due to a combi-
nation of small plot size and limited precision of LiDAR footprint
positions (Lefsky et al., 1999).

The scarcity of sites combining large-scale LiDAR coverage and ex-
tensive forest plot inventories over a broad range of forest types has
slowed our efforts to evaluate the robustness and accuracy of small
footprint airborne LiDAR predictions of closed-canopy tropical forest
structure. In the study described herein, we address this issue by cap-
italizing on a large, ground-based forest inventory (129 ha total area)
covering a great diversity of forest structures resulting from natural
(soil and geological substrate) and anthropogenic effects (unlogged
and logged forests), and full coverage of this site by a small footprint
airborne LiDAR, in French Guiana, South Eastern America.

Non species specific pan tropical allometric equations linking tree
AGB to tree height (h), stem diameter (d) at 1.3 m or above but-
tresses , and wood density, have been established for different forest
types in different ecological zones (Chave et al., 2005). The explicit in-
clusion of tree height is essential to avoid bias associated with varia-
tions in the mean h–d relation across sites (Chave et al., 2005;
Feldpausch et al., 2010; Vieilledent et al., 2011). A commonly used
model of individual tree AGB has the following general form:

AGB ¼ F � ρ � π
4
d2

� �
� h ð1Þ

where ρ is oven dried wood specific gravity, d is stem diameter in cm,
h is total tree height in m and F is a form factor.

Stand volume equations based on a similar approach have long
been used by foresters. The product of mean stand height, stand
basal area and a stand form factor (capturing the average form factor
for the stand) has been used to estimate stand cubic volume (Husch
et al., 2002). LiDARmainly provides information on vegetation height,
either as top of canopy or as a vegetation profile, and foresters have
devoted considerable effort to developing procedures that can be
used to estimate stand height from LiDAR data (Næsset, 1997). Such
estimates are now considered to be robust (Hopkinson et al., 2006).
On the other hand, the relation between stand height and stand
basal area is expected to vary significantly between sites, even within
ecological zones, reflecting variations in the h–d relation in individual
trees (Chave et al., 2005). Hence, an assessment of site-to-site vari-
ability in LiDAR predictions of AGB must focus on the relation
between LiDAR metrics and basal area (BA).

This focus on BA as a key variable when mapping AGB based on
LiDAR data is further supported by the recent results of a multisite
study (Asner et al., 2012) where a “universal” approach to predicting
tropical forest biomass from LiDAR coverage was proposed and test-
ed. By analogy with individual tree biomass models, the authors pro-
posed to decompose plot level biomass as follows:

AGBplot ¼ aMCHb1 � BAb2 �WDBA
b3 ð2Þ

where BA is basal area in m2, WDBA is the basal area-weighted wood
density of each plot, and MCH is Mean Canopy Height i.e. the vertical
centre of the canopy volumetric profile (as opposed to simple
top-of-canopy height). The initial results of this study, obtained by
combining data from Panama, Hawaii, Madagascar and Peru, strongly
suggest that local variability in the LiDAR-to-biomass relation can be
efficiently captured by determining the site-specific relation between
LiDARmetrics and BA, and assessing the wood density of local species.
Conversely, Mean Canopy Height, as used in the above model, can be
obtained unequivocally from LiDAR data in a site-independent man-
ner on condition that standardized sensors and acquisition parame-
ters are used across sites (Næsset, 2009). Here it is noteworthy that
in the latter approach, the form factor—which relates stand height
and BA to stand volume or biomass—is subsumed in the set of fixed
parameters a, b1, b2 and b3 and is implicitly taken to be constant
across sites.

The main aim of the study described herein was therefore to
contribute to evaluating the robustness and accuracy of small foot-
print airborne LiDAR used to predict stand basal area (BA) and its
components, quadratic mean diameter (Dg), and stand density (N),
in undisturbed and logged over tropical moist forest. In particular,
we were interested in (a) identifying the combination of LiDAR-
derived canopy statistics that most accurately predicted the above-
mentioned structural variables; (b) evaluating the accuracy of a gen-
eral model adjusted to a large dataset encompassing different sites
and different forest structures; (c) identifying the various sources
of errors and assessing their contribution to overall uncertainty in a
given regional context (French Guiana); (d) identifying areas of po-
tential improvement for LiDAR predictions of BA (or AGB).

2. Material and methods

2.1. Study sites

A total of 129 one-ha square forest plots were selected at four dif-
ferent sites in French Guiana (Table 1, Fig. 1). The climate in French
Guiana is equatorial with little variation in temperature and wind
regime around the year (Boyé et al. 1979). Mean annual precipitation
ranges from 1700 mm in the North–West to 3800 mm in the North–
East (Cacao region). Seasonality is mostly related to the annual rainfall
pattern, with lower precipitations around September and October.
Climatic diagrams for two sites (PAR and NOU) located 135 km apart
are provided as supplementary information (Fig. S1). Unlogged ever-
green forest was the dominant vegetation sampled at all sites and
totaled 89 plots. An additional 36 plots (PAR site) were logged experi-
mentally at different intensities in 1984. Another four plots were
set-up in forest regrowth (PSE site) in an area that was entirely clear-
cut in 1976.

Stem diameter at all plots was recorded at 1.30 m or above basal
irregularities such as buttresses for all trees with stem diameter



Table 1
Characteristics of the data collected for 129 one-ha forest plots in French Guiana. Site acronyms are explained in the Material and methods section.

Site Year of ground inventory
(area sampled)

Year of
LiDAR scan

Mean number of pulses
per m2 (SD)

Comments

PAR 2009 (85 ha) 2009 12.4 (5.0) Consolidated Canopy Height Model obtained by merging three
scans taken over a 6-month period; 36 plots logged over.

MPB 2003 (10 ha) 2008 (6 ha)
2009 (1 ha)

2009 5.8 (3.1) Highly contrasted forest structure, including a very large range of stem
densities and canopy heights.

PSE—OldGrowth 2003 (11 ha) 2009 5.7 (2.6) One 1000×100 m track+1 ha.
PSE—Spiro 2005 (1 ha) 2010 (1 ha) 2009 6.8 (3.4) Low canopy forest dominated by a single species (Spirotropis longifolia).
PSE—Arbocel 2009 (4 ha) 2009 5.4 (2.3) 32-year-old secondary forest.
NOU—“Grand Plateau” 2008 (10 ha) 2007 4.5 (2.9) One 1000×100 m track; very variable physiognomy.
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greater than 10 cm. A botanical identification to genus or species was
available for more than 80% of the trees in 124 plots.

The first study area consisted of the Paracou experimental
research station (PAR, 85 plots, 5° 15′ N, 52° 56′ W). This was set
up in the mid-1980s to provide baseline information on forest recov-
ery after logging. The range of forest structure encountered here
arises from natural variations in local drainage combined with differ-
ent logging intensities (Gourlet-Fleury et al., 2004b; Vincent et al.,
2010). The three logging treatments implemented in this area had
reduced plot basal area by ca. 5, 10 and 15 m2 ha−1 from an initial
average basal area of 31 m2 ha−1 (Gourlet-Fleury et al., 2004a). Our
study considered 12 one-ha plots for each logging treatment.

The second study area was Piste de Saint-Elie (PSE, 17 plots, 5° 16′
N, 53° 3′W) located 15 km west of Paracou. Four plots were set-up in
secondary forest regrowth following complete clearing of the vegeta-
tion in 1976 (Sarrailh et al., 1990; Toriola et al., 1998). Two plots were
selected in a patch of locally mono-dominant Spirotropis longifolia
(Fonty et al., 2011), and the remaining 11 plots (one 1000×100 m
plot, i.e. 10 contiguous 1-ha plots, plus one separate, square 1-ha
plot) were selected in unlogged forest and were initially inventoried
to study the relation between soil cover organization and floristic
composition (Sabatier et al., 1997) before being re-censused in 2003
(Madelaine et al., 2007).

The third study area was Montagne Plomb (MPB, 17 plots, 5° 1′ N,
52° 55′ W), another important forest ecology research site in French
Guiana. In all, 11 isolated one-ha plots and one 200×300 m plot
were selected over a large area (~100 km2) and included a consider-
able diversity of forest structures. Forest structure in the area was
shown by Paget (1999) to vary considerably in relation to soil
Fig. 1. Location map of the sites wh
substrate and drainage regime. This floristic-soil relation was further
studied by Sabatier et al. (2007) and high stem densities are found
here on thin superficially drained soils (Couteron et al., 2005).

Finally, plot data from the Nouragues Ecological Research Station
(NOU, 10 plots, 4°5′ N, 52°41′W) were included in the study. Ground
measurements at this site were taken from a 10-ha forest track
(“Grand Plateau Bande L”, 1000×100 m) of very variable physiogno-
my: from highmature forest with fairly open understorey dominating
in the northern part of the transect to low forest with locally abun-
dant lianas dominating in the south (Chave et al., 2008; Poncy et al.,
2001).

2.2. LiDAR data

All LiDAR coverage data were acquired in 2007 (NOU site) and 2009
(other sites) by a private contractor, Altoa (http://www.altoa.fr/), oper-
ating a helicopter-borne LiDAR. The helicopter flew between 120 and
220 m a.g.l. The system was composed of a scanning laser altimeter
with a rotating mirror mechanism (Riegl LMS-Q140i-60 operated in
2007 and 2009, or newer LMS-280i operated in 2009), a GPS receiver
(coupled to a second GPS receiver on the ground) and an inertial
measurement unit to record the aircraft's pitch, roll and heading. Laser
wavelength was 0.9 μm (near infrared), scanning angle was ±30°
(LMS-Q140i-60) or ±15° (LMS-280i), and the laser recorded the last
reflected pulse to within better than 0.1 m. The mean number of pulses
perm2 on a single acquisitionwas ~4, but this varied significantly across
plots at any given site (Table 1). Mean footprint at ground level was
about 45 cm (Riegl LMS-Q140i-60) or 10 cm in diameter (LMS-280i).
The two systems were compared in 2009 at one site (PAR).
ere the study was conducted.

http://www.altoa.fr/


Fig. 2. Site variations in log transforms of quadratic mean diameter (Dg in cm) and
stem density (N in stems ha−1); dotted lines represent basal area (BA in m2 ha−1) iso-
lines. Each point (observation) represents a 1-ha plot. Site coding: stars = PAR, open
squares = PSE, open triangles = MPB, solid circles = NOU.
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Both systems had the capacity to record only a single return pulse.
When conducting a preliminary test run with the LMS-Q 140i-60 at a
density of 4 pulses m–2, we found that recording the last return pulse
increased the percentage of ground returns (which nevertheless
remained typically below 1%). We also found that mean penetration
(difference between first and last return) was ~2 m, and that the
mean Canopy Height Model (CHM) was 50 cm lower in last return
mode than in first return mode.

Raw data points at each site were first processed to extract ground
points using the TerraScan (TerraSolid, Helsinki) ground routine
which classifies ground points by iteratively building a triangulated
surface model. Ground points typically accounted for less than 1% of
the total number of return pulses. A one-meter Canopy Surface
Model was derived for each plot in our sample by considering the
local maximum height on a 1×1 m grid. Digital Terrain Model inter-
polated from the ground points was subtracted from the Canopy
Surface Model to obtain the digital Canopy Height Model (CHM). A
few cells—typically less than 2%—had no registered hits due to shad-
ing effects. In some cases a larger fraction of cells had no data due
to the helicopter suffering strong pitch and roll locally in wind
gusts, and this generated data gaps if the scans resulting from two
successive flight lines failed to overlap. We did not use a filling algo-
rithm to plug the few missing cells in the CHM; these were treated as
missing data.

The CHM height distribution was used to generate statistics select-
ed on the basis of previously attested performance in a similar con-
text (Vincent et al., 2010): moment statistics (mean, standard
deviation, skewness and kurtosis), order statistics (median, 10% and
90% percentiles) and the proportion of heights below 5 m (canopy
gaps).

The height distribution for each of the 129 sample plots was fur-
ther summarized using correspondence analysis (CA) applied to rela-
tive frequency in 13 five m-height bins (from 0 to 65 m). The
coordinates on the first 3 axes were labeled CA1 to CA3 and together
captured 83% of the total inertia (CA variance) of the height distribu-
tions in the 129 plots.

CA loadings efficiently capture differences between plot CHMs,
and therefore assess the correlation between height distributions
and stand variables. However, CA loadings have two disadvantages
over more “objective” predictors. First, they may be difficult to relate
to particular characteristics of the height distribution, and second,
they are essentially dependent on the composition of the sample
dataset.

Ground and LiDAR data were co-registered based on GPS geo-
location. The standard procedure for geo-referencing plots was to ac-
quire plot corner coordinates using a handheld GPS unit (Garmin CSX
60) with readings averaged over a 15-min period and acquire plot
orientation (northing) with a hand-held compass. The plot was then
positioned using GIS software based on the coordinates of its centre
(average corner coordinates) and orientation. Overall precision for
the X and Y coordinates of plot center was estimated from repeated
corner measurements of 11 plots at the MPB site by different opera-
tors on different dates. Standard error on plot corner coordinates
was found to be ~8 m. The error on plot center coordinates was com-
puted as the standard error of the mean of the four plot corners coor-
dinates, i.e. ~4 m. Plot geolocation was more precise at the PAR site as
one corner per plot was geolocated using a differential GPS while the
other three corners were positioned using a compass and a surveyor's
rope. A 1 m error on plot center was considered to be a conservative
estimate for all plots at this site.

2.3. Stand characteristics

The following were computed: basal area (BA in m2 ha–1, sum of
the cross-sectional areas of all trees with d>10 cm per ha), quadratic
mean diameter (Dg in cm, square root of the arithmetic mean square
diameter) and stem density (N per ha). Noting that (expressing Dg
in m)

BA ¼ N � Dg2 � pi
4

ð3Þ

N and Dg can be viewed as elementary components of stand BA.
Log transforms of basal area components (Dg and N) were linearly

correlated but this relation varied by site. Plots with extremely high
stem densities at one site (MPB) showed a relatively large stem qua-
dratic mean diameter (Fig. 2).

2.4. Models development

Different BA-predicting models were evaluated and compared.
These comparisons involved simple (one predictor) regression vs.
multiple (several predictors) regression models, site-specific vs. re-
gional models, and nested vs. non-nested models.

Linear regression (glmprocedure in R)was used to predict plot basal
area (or its components) from a single predictor or a set of predictors
selected from a set of LiDAR statistics using a step procedure and
the minimum AIC selection criterion. To safeguard against possible
over-fitting, we used leave-one-out cross-validation (cv.glm procedure
in R boot package) and present RMSEP (ResidualMean Squared Error of
Prediction) along with the global RMSE computed on the residuals of
the model developed using the entire dataset. We also present the
best single predictor model for each stand parameter.

As regional models do not distinguish between sites, site-specific
models were built by adding a site factor (4 levels) to the most parsi-
monious multiple regression model. And regression coefficients were
allowed to vary by site by including interactions between the site fac-
tor and the other factors included in the model.

Nested models were an alternative strategy used to directly regress
plot BA with LiDAR metrics and consisting of separately regressing ele-
mentary components (N and Dg) then subsequently combining these
components to compute BA. The rationale for testing such an approach
is that the same BA can be achieved through various combinations of
Dg and N and hence potentially different CHM characteristics (Fig. 2).
Therefore, if LiDAR statistics correlate better with the elementary com-
ponents of BA than with BA itself, it may prove more efficient to esti-
mate these components separately. Additionally, as Dg is squared and
multiplied by N to obtain BA, the error made on the elementary compo-
nents may be amplified.

image of Fig.�2
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Simple regression (i.e. regression of a particular stand characteris-
tic, namely BA, with a single statistic extracted from CHM) proved to
be effective in a recent study (Asner et al., 2012) and has the merit of
simplicity.

In our efforts to identify the best modeling strategies, we were
particularly interested in comparing the performance of site-specific
simple regression models with that of a multiple regression regional
model of BA (taken as our reference model in the remainder of this
manuscript). We also sought to assess the robustness of the nested
models developed at site and regional levels.

Given the strong correlation (>0.99) between mean, median and
CA1, we omitted the last two variables in our initial set of explanatory
variables, keeping only 10 candidate predictors: mean, standard devi-
ation, skewness, kurtosis, 10% and 90% percentiles, maximum, pro-
portion of heights below 5 m (inf5), CA2 and CA3.

2.5. Model error analysis

Various sources of error affecting the data may degrade model
performance and need to be considered. Errors may affect the predic-
tors extracted from the CHM or the values to be predicted which are
themselves estimated from ground survey.

We successively evaluated the errors affecting the data used in
model building and the impact of these errors on model predictions.
We used Mean Square Error of Prediction (MSEP) as a measurement
of model prediction accuracy, and estimated MSEP by cross validation
(Leave-One-Out procedure). We refer the reader to Efron (1983) for a
discussion of the properties of the commonly used cross-validation
estimator relative to bootstrap estimators.

The formal decomposition of MSEP that we present below is
borrowed from Wallach and Genard (1998).

Let y be the random variable to be predicted (i.e. the plot structural
characteristic of interest BA, N or Dg) and let X be the random vector of
the predictor variables (the vector of the statistics extracted from the
CHM retained in the model). Since the predictors themselves carry
some uncertainty, we do not have access to X itself but rather to esti-
mated values X̂ ¼ X þ εX , where εX is the random error that is assumed
to have zero expectation (predictors should be unbiased).

The prediction model is denoted f p̂;Xð Þ, where p̂ is the vector of
the (estimated) model parameters. Since the parameters are estimat-
ed, p̂ is assumed to be a random vector and the conditional mean
squared error of prediction of a model is defined as

MSEP p̂ð Þ ¼ E y−f p̂; X̂
� �h i2� �

ð4Þ

The expectation is over all the randomvariables, i.e. over the individ-
uals in the population (i.e. over plot values to be predicted) as well as
over X̂ (i.e. the plot CHM statistics) and p̂ (the estimated parameters).

MSEP p̂ð Þ decomposes into (Wallach & Genard, 1998)

MSEP p̂ð Þ ¼ Λ þ Δþ Γ ð5Þ

where

Λ ¼ E y−E yjXð Þ½ �2 ð6Þ

Δ ¼ E E yjXð Þ−f X̂ ; p̂jX
� �h i2 ð7Þ

Γ ¼ E E f X̂ ; p̂ Xj Þ−f X̂ ; p̂
� �� �� i2� ��

ð8Þ

Λ, the “population variance”, represents theminimumMSEP p̂ð Þ that
can be achieved for a given choice of predictor variables, i.e. the irreduc-
ible random error in themodel (Wallach & Genard, 1998). This term in-
cludes the error made on the plot variables to be predicted.
Δ, the “model bias”, measures the average squared difference be-
tween the average y for a given X, and the corresponding model pre-
diction averaged over X̂ and p̂.

Γ, the “model variance”, represents the direct effect of uncertainty in
the input variables (i.e. in the CHM statistics) or the model parameters.

We estimated the component of model variance due to uncertain-
ty on the input variables by error propagation analysis after charac-
terizing the error bearing on the CHM statistics. We also estimated
the error bearing on the stand values to be predicted. The latter is in-
troduced at the ground data collection stage and contributes to the
population variance. The relative contribution of these errors to the
MSEP of the different models was then assessed.

2.6. CHM statistics error analysis

The Mean Square Error of each of the CHM-derived predictors was
evaluated by comparing replicate flights. Let x denote a particular
CHM statistic (e.g. mean canopy height) and let x̂ be its estimator.
The Mean Square Error of the estimator x̂ is defined as

MSE x̂ð Þ ¼ E x̂−xð Þ2
h i

ð9Þ

where E is the expectation (over x̂), which can be re-written as (Tassi,
1989)

MSE x̂ð Þ ¼ Var x̂ð Þ þ Bias x̂; xð Þð Þ2 ð10Þ

This shows that MSE is the sum of the variance and the squared
bias of the estimator.

The variance and bias of each statistic's estimator were estimated
by using replicate flights over limited areas. By ANOVA, we decom-
posed the observed variance of each statistic into a plot effect, a
scan effect (estimating bias of the statistic associated with a particular
scan) and a residual variance (the variance of the estimator).

We also evaluated the contribution made by inaccurate plot loca-
tion to the variance of each statistic. In this case no bias was expected.
The variance of the estimator was assessed by one-way ANOVA using
plots as unique predictor.

2.6.1. Error on CHM statistics
The various statistics extracted from the CHM were affected by

sampling error and by the characteristics of the LiDAR system. Sam-
pling error accrued due to the fact that the scanning procedure was
essentially a sampling procedure: even at relatively high densities,
only a fraction of the actual canopy was sampled and any particular
location may have been sampled from a range of distances and from
various viewing angles. Both these factors potentially affected the
characteristics of return pulses. Furthermore, bias (systematic differ-
ence between scans) may have occurred since scan acquisition
parameters such as height of flight above ground level, atmospheric
conditions, and scanning density may all have varied to some extent
between flights. And when different laser systems were used, laser
system specifications (particularly detection threshold, emitted
pulse energy, and also in the present case swath angle) may produce
systematic difference between scans (Næsset, 2009).

Sampling error in LiDAR acquisition (identical acquisition param-
eters). We first evaluated the repeatability of independent acquisi-
tions made on a given day and using identical LiDAR settings (Riegl
LMS-Q140i-60, 45 cm footprint, ±30° scanning angle). We used four
replicate acquisitions over a 30-ha block at the MPB site but along dif-
ferent flight lines. The acquisition characteristics for each LiDAR scan
were similar: mean pulse density per m2 was 4.3 with a standard de-
viation of 2.5 including 4% missing cells.

LiDAR sensitivity to distinct acquisition parameters. Working on a
25-ha block of the PAR site, we compared the difference between two
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acquisitions made 6 months apart (April and October) using different
parameters: Riegl LMS-Q140i-60 (larger footprint and swath angle)
and LMS-280i (smaller footprint and swath angle). Mean pulse densi-
ty per m2 was 5.3 (sd=2.6; 1.9% missing cells) in the April scan and
5.2 (sd=2.6; 2.4% missing cells) in the October scan.

Error in plot location. We randomly shifted plot boundaries with-
out any deformation. Shifts in X and Y coordinates were sampled in-
dependently from a normal distribution with mean=0 and standard
deviation=4 m for plots outside the PAR site and mean=0 and stan-
dard deviation=1 m for plots within the PAR site. We recomputed
plot-related LiDAR statistics based on the new locations, and repeated
the process 50 times.

2.6.2. Uncertainty propagation
Two 10-dimensional distributions of error affecting the 10-

dimensional vector of predictors resulting (1) from LiDAR acquisition
error and (2) from plot location error were generated. Once the error
bearing on CHM-derived statistics had been characterized, we com-
puted error propagation by modeling the process in a digital simula-
tion, as follows. For every plot we re-sampled both the distribution of
errors, added these terms to the observed values of CHM statistics,
and applied the various stand parameters-predicting models to the
noisy dataset (i.e. the original CHM statistic to which the error term
was added). Note that the error term applied to the CHM statistics
for each observation (each 1-ha plot) was selected independently
but conserved the correlation structure of the error vector between
the different CHM statistics. The same procedure was used for single
predictor models, multiple regression models and the nested model.
We ran 1000 such simulations and report error mean.

2.6.3. Error affecting the values to be predicted
Error in plot area. Measurements of plot area are prone to error,

especially in rugged terrain where sloping is uneven. We estimated
plot area error by running simulations and considered an error of
2 m for plot side and one degree for plot side azimuth (assuming
these errors to be independent).

Temporal lag between LiDAR acquisition and ground inventories.
Some plots in our sample (11 plots in PSE, and 10 plots in MPB) had
been surveyed 5 to 6 years before the LiDAR scan was acquired, and
there was some time lag for many plots between the ground survey
and the LiDAR scan (see Table 1). This time lag contributed to themodel's
overall prediction error as it created uncertainty on actual plot BA on the
day of the LiDAR scan. We used data from old growth, unlogged forest
at the PAR experimental site (where regular inventories had been con-
ducted every other year) to assess the magnitude of this source of error.
We were therefore able to estimate the error arising from 2, 4 and
6 years of discrepancy between laser scan and field inventory dates.

To facilitate comparisons of themagnitude of the error affecting var-
ious structural variables, we computed the relative Root Mean Squared
Error (rRMSE) as the ratio of the RMSE to the prediction mean:

Relative RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1∈i
2

n−p

s
� 1

1
n∑n

i¼1ŷi
ð11Þ

where n is the total number of obs, ŷi is the predicted value for observa-
tion i,∈i is the error term∈i ¼ yi−ŷi, and p is the number of parameters
used in the model.

3. Results

3.1. Most accurate predictive models

The magnitude of the error varied between stand variables
(Table 2, Fig. 3). Stem density had the highest RMSE and Dg the low-
est, while the RMSE for BA predictions was intermediate. Regressing
BA with LiDAR metrics yielded slightly better predictions (lower
RMSE and higher r2) than the nested procedure where components
were estimated separately and BA was computed subsequently (com-
pare M2 and M4 in Table 2).

The most accurate multiple regression models systematically
retained some CA loadings (last column in Table 2). Multiple regression
models yielded more accurate predictions (lower RMSEP) than single
regression models, and this applied for site-independent models (M2
vs. M5, M8 vs. M10, M12 vs. M13), site-specific models (M1 vs. M3)
and nested models (M4 vs. M7).

Site-specific models (Fig. 3d) were systematically more accurate
(lower RMSEP) than their site non-specific counterpart (for all
stand variables predicted and model structures used, Fig. 3c and d il-
lustrate the case for BA). However, an increase in the difference be-
tween RMSEP and RMSE indicated some degree of over-fitting when
applying multiple regression per site of BA (M1 in Table 2).

Models using site and a single CHM statistic as predictors per-
formed on a par with the non site specific multiple regression of
CHM statistics when predicting BA (M2 and M3 in Table 2), fared
less well when predicting Dg (M8 and M9) and significantly better
when predicting stem density (M11 and M12).

3.2. Error analysis

Error bearing on the predictors. The error associated with LiDAR
scan repeatability, sensitivity to LiDAR acquisition parameters and
plot location uncertainty, and bearing on the various statistics
extracted from the CHM, is reported in Table 3.

Some CHM-derived statistics appeared to be significantly biased
(Table 3). However, the contribution made by the squared bias to
MSE in LiDAR-derived statistics was generally far smaller than the
variance of the estimator, and systematically less than 1% of the
total variance. Therefore, in the remaining—and notably in the uncer-
tainty analysis—we neglected bias and treated the global error bear-
ing on the predictors as white noise.

Some statistics appeared to be less stable than others. For instance,
the frequency of heights below 5 m (inf5) showed the highest Mean
Squared Error (MSE). Similarly, the MSE of dec1 was typically 4- or
5-fold the MSE of dec9 as a result of a lower sampling intensity of
lower areas in the CHM (interstitial spaces between crowns).

The plot location uncertainty in Table 3 was as expected under
standard field conditions (i.e. it does not apply to the PAR site where
plot location was more precise through differential GPS positioning
of plot corners). Under standard conditions this plot location uncer-
tainty tended to induce less error on the LiDAR statistics (lower
MSE) than did LiDAR acquisition uncertainty. However, LiDAR type
and settings had only a moderate impact on LiDAR statistics on the
1-ha scale, and this impact was similar in magnitude to the noise ob-
served between independent acquisitions using the same settings.

Table 4 (column 4) shows the propagated error on the various
stand variable predictions for the set of models presented in Table 2.

3.2.1. Error on predicted plot variables
In addition to the uncertainty carried by the predictors, uncertain-

ty regarding true plot area and time lag between field inventory and
LiDAR acquisition also needed to be considered as this contributes di-
rectly to overall model error.

Plot area. The simulation procedure described in the Material and
method section gave a mean plot area error of 2.7% which translated
into a similar error on basal area.

Time lag between acquisitions. Error on BA estimates accruing
from using 6-year-old inventory data was of the order of 3% (Fig. 4)
and affected about 20% of the sample. A time lag of 2 years induced
a BA error of ~1.3%. We evaluated the overall time lag contribution
for all the plots by weighting the error committed for a particular



Table 2
Summary statistics of multiple and single linear regressions of forest stand structure variables from LiDAR-derived canopy height variables in 129 one-ha plots in French Guiana.
BA = basal area in m2, Dg = quadratic mean diameter in cm, N = stand density in stems per ha. Predictors are extracted from the heights distribution in the LiDAR-derived Canopy
Height Model: mean, standard deviation (sd), skewness (skew), kurtosis (kurt), 90% percentile (dec9), coordinates on axes 2 (CA2) and 3 (CA3) of a correspondence analysis on
height frequency distribution. Site is a site factor as in Table 1. Predictors were selected on minimum AIC criterion. RMSEP is the Root Mean Square Error on Prediction, RMSE is the
Root Mean Square Error of the model, rRMSE is the relative RMSE.

Dependent variable Model R2 adj.R2 RMSEP RMSE rRMSE df Predictors

M1 BA Multiple regression per site 0.73 0.68 2.72 2.31 7.9% 105 sd dec9 skew CA2 CA3 Site
M2 BA Multiple regression 0.56 0.54 2.80 2.76 9.5% 124 sd dec9 skew CA2 CA3
M3 BA Single regression per site 0.56 0.54 2.88 2.77 9.5% 121 mean Site
M4 BA Nested multiple regression 0.53 0.49 3.02 2.9 9.9% 118 sd kurt mean CA2 skew CA3
M5 BA Simple regression 0.42 0.41 3.15 3.11 10.7% 127 mean
M6 BA Nested simple regression per site 0.49 0.42 3.28 3.28 11.2% 113 mean Site dec9
M7 BA Nested simple regression 0.37 0.36 3.35 3.35 11.4% 125 mean dec9
M8 Dg Multiple regression 0.85 0.84 1.24 1.22 4.9% 124 sd kurt mean CA2
M9 Dg Simple regression per site 0.83 0.82 1.37 1.31 5.2% 121 mean Site
M10 Dg Simple regression 0.75 0.75 1.57 1.56 6.2% 127 mean
M11 N Simple regression per site 0.83 0.82 59.7 54.6 9.1% 121 dec9 Site
M12 N Multiple regression 0.65 0.64 79.8 76.9 12.8% 123 sd skew kurt mean CA3
M13 N Simple regression 0.59 0.59 83.4 82.1 13.6% 127 dec9
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time lag by the corresponding number of plots. This yielded an esti-
mated 0.3% error for Dg, 0.5% for stem density and 0.8% for BA.

By subtracting the contribution of these error components to
MSEP̂ (the estimated MSEP) we estimated the “intrinsic” model error
i.e. the MSEP that would be achieved should these errors be
0 (Table 4). For all the models tested, the errors affecting the data
used in model building which contributed either to the model variance
or to the population variance (as defined in Section 3.2), made up less
than 13% ofMSEP̂ (Table 4), indicating that the error in model predic-
tions was predominantly due to intrinsic model shortcomings.
Fig. 3. Scatterplot of observed values vs. multiple regression prediction of (a) N (stem dens
regression adjusted by site. A few outlier plots (A, MPB3, DIAM5, SPM, SPQ, 16_21) are discu
stars = PAR, open squares = PSE, open triangles = MPB, solid circles = NOU.
Finally, we computed local bias as the mean of predicted values
minus observed values per site and per forest type, and this for each
stand variable and the different regional multiple regression models
used (Table 5).

With the exception of monodominant Spirotropis forests, the dif-
ferent forest types did not show severe bias. Spirotropis forest plots
were subject to marked overestimation of stem density and marked
underestimation of plot quadratic mean square diameter. These
biases of opposite sign partly offset each other in the nested BA pre-
diction model (line 1 in Table 5 and Fig. 3, plots SPM and SPQ).
ity); (b) Dg (quadratic mean stem diameter); (c) BA (basal area); (d) BA (basal area)
ssed in the text. Confidence Gaussian bivariate ellipse drawn for P=0.67; Site coding:

image of Fig.�3


Table 3
Mean Square Error bearing on statistics derived from the Canopy Height Model (% of total variance); MSE is the sum of squared bias and variance of the estimator (see Eq. 5 in text);
significance of the bias (P value for Fisher's exact test in ANOVA): ** corresponds to Pb0.01, * corresponds to Pb0.05, – corresponds to P>0.05.

LiDAR scan repeatability
(30 ha×4 replicates; MPB site)

LiDAR scan sensitivity to swath
angle and footprint size (25 ha×2
replicates; PAR site)

Plot location uncertainty (SE=5 m,
40 ha×50 replicates; MPB, PSE,
NOU sites)

Statistic MSE Squared bias MSE Squared bias MSE (no bias)

mean 2.70% 0.38% ** 0.74% – 0.38%
sd 1.93% – 1.75% 0.73%** 0.39%
dec1 5.44% 0.47%* 1.30% 0.31%* 1.77%
dec9 0.75% 0.12%** 0.25% 0.06%* 0.33%
inf5 5.05% – 2.83% – 2.18%
CA2 3.35% – 0.57% – 0.69%
CA3 3.32% – 1.54% – 1.49%
kurt 3.30% – 1.71% – 1.56%
skew 1.95% – 1.42% 0.54%** 0.98%
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We found that all variables at the MPB site were consistently
underestimated by all regional models used (see also Fig. 3).
4. Discussion

Our regional (site-independent) model of BA carries an RMSEP of
2.8 m2 ha−1 (9.6%). A small (b10%) albeit significant part of the
Mean Squared Error of Prediction can be traced back to the data col-
lection procedure and is not strictly inherent to the model. Therefore,
most of the MSEP must be ascribed to the model itself. Site-to-site
variations in the relations between LiDAR metrics and stand variables
probably contribute to this MSEP, as indicated by the fact that the
RMSEP decreased when the models were adjusted by site (Table 2).
However, when a site factor was included, this did not substantially
reduce MSEP (for instance, compare M1 and M2 in Table 2). The
MSEP likely stemmed from within site variations in the relations be-
tween LiDAR statistics and stand variables (see for instance Table 5
Logged-over forest (LOF), or Spirotropis dominated forest (MF)).
This is further supported by the fact that models which included
site-specific regressions (Fig. 2d) did not remove all pre-identified
outliers. For instance, BA in plot “16–21” at the PAR site was still poor-
ly predicted. This plot is dominated by swamp forest that has its own
peculiar structure composed of abundant small palm trees (Euterpe
oleracea) and a few large emergent trees. Plot “Diam5” at the MPb
site is highly stocked (Fig. 3a) and was an outlier in the regression
by site (Fig. 3d), while two other strong outliers (A and MPB3) fell
back in line with predictions once the site was included in the model.
Table 4
Contribution of various sources of error to MSEP in models predicting stand variables (BA =
ha) from statistics derived from the Canopy Height Model. Errors affecting predicted stand
and LiDAR scan. Errors affecting LiDAR statistics arise from the combined effects of inaccur

Source of error

Dependent variable Model CHM statistic

M1 BA Mul. reg. per site 0.52
M2 BA Multiple regression 0.29
M3 BA Simple reg. Per site 0.23
M4 BA Nested mul. regression 0.28
M5 BA Simple regression 0.26
M6 BA Nested sim. reg. per site 0.52
M7 BA Nested sim. regression 0.42
M8 Dg Multiple regression 0.16
M9 Dg Sim. reg. per site 0.28
M10 Dg Simple regression 0.26
M11 Dens Sim. reg. per site 9
M12 Dens Multiple regression 6
M13 Dens Simple regression 6

a [(Error_CHM)2+(Error_Plot_Size)2+(Error_Time_lag)2]/(RMSEP)2.
Miscellaneous potential sources of error in the model were con-
sidered. Systematic error in predictors (i.e. bias) may have contribut-
ed to the MSEP reported here. Two such sources of bias (difference in
acquisition parameters either between replicate flights or between
different LiDAR systems) were evaluated and considered negligible
(Table 4). Swath angle was in principle of concern as larger angles in-
crease shading effects and therefore increase the proportion of
undetected lower points such as interstitial gaps between crowns. Ex-
cluding the lowermost points would affect all the LiDAR statistics
considered here. The size of the laser foot print might also affect the
likelihood of the laser beam being intercepted by canopy elements,
and hence affect the CHM. These effects, however, seemed to be neg-
ligible compared to overall sampling noise on the 1-ha scale of the
summary statistics (see results in Section 3.3) and in this study
were included in the variance of the predictors' estimators. DTM ex-
traction quality, on which CHM quality depends, may be of greater
significance. DTM quality is likely to depend on terrain regularity,
vegetation density and LiDAR pulse density, which together also af-
fect the output of the procedure used to retrieve ground points
(Clark et al., 2004; Xiaoye Liu, 2008). However, this is liable to be-
come a stringent issue only in cases of extremely rugged terrain
and/or low scanning density, and probably contributed little to the
prediction error observed in the present study. Ground-surveyed to-
pographic data were available at one site (PAR) to validate DTM,
which was found to be acceptable (mean difference=0.02 m, SD=
0.57, n=730). More significant sources of bias in this study consisted
of idiosyncratic differences between forest types in the relation be-
tween canopy statistics and forest structure. These biases can locally
basal area in m2, Dg = quadratic mean diameter in cm, N = stand density in stems per
variables arise from inaccurate plot measurement or a time lag between plot inventory
ate plot location and noise in the LiDAR signal.

s Plot size Time lag RMSEP Sampling error
contribution to MSEP a

0.79 0.23 2.72 13%
0.79 0.23 2.8 10%
0.79 0.23 2.88 9%
0.79 0.23 3.02 8%
0.79 0.23 3.15 8%
0.79 0.23 3.28 9%
0.79 0.23 3.35 8%
_ 0.08 1.24 2%
_ 0.08 1.37 5%
_ 0.08 1.57 3%
16 3 59.7 10%
16 3 79.8 5%
16 3 83.4 4%



Fig. 4. Effect of time lag between successive inventories on change in stand parameters
evaluated for 24 one-ha plots of undisturbed forest (Paracou 1999–2007); solid line:
BA, dashed line: stem density, dotted line: Dg.
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be substantial, as suggested by the apparent specificity of the MPB
site (Table 5). Here, BA was consistently underestimated by a regional
model, and a nested model did not improve prediction accuracy.

Similarly, BA components of Spirotropis-dominated plots (SPM
and SPQ, Fig. 3a and b) were poorly estimated, with density being
overestimated and Dg underestimated. Unsurprisingly, BA was also
poorly estimated (Fig. 3c).

The above observations suggest that a hierarchical approach may
prove more efficient for predicting biomass than an elusive one-
size-fits-all relation between LiDAR statistics and forest structure pa-
rameters. Prior stratification by age class and site quality has been
advocated for boreal forest (Næsset, 2002). In the present case, a
site-adjusted model improved r2 substantially (Table 2, compare l. 1
and 2, and Fig. 3d), but suffered from over-parameterization.

Howdid our regional (site-independent)model comparewith pre-
viously published models? As mentioned earlier, Lefsky et al. (2002)
achieved fairly low precision using large-footprint LiDAR to study bo-
real and temperate forest structure. Drake et al. (2002) also used a
large-footprint airborne LiDAR for their study of tropical forest canopy
at the La Selva Biological station in Costa Rica. They obtained a plot
level RMSE of 3 m2 for basal area and 2 cm for Dg, i.e. slightly larger
than those reported for our site-independent model (Table 2). No
data were given in their paper for stem density predictions. Their re-
sults were based on heterogeneous field dataset sources and plot
sizes (plots ranged in size from 0.05 to 0.5 ha) and included non-
forest land (pasture). Hall et al. (2005) studying Ponderosa pine
forest structure using small footprint LiDAR obtained an RMSE of ca.
5.8 m2 (ca. 20%) for BA (n=41) and 158 stems ha−1 (ca. 44%) for N.
No data were provided for Dg. Average plot size in their study was
0.28 ha (ranging from 0.16 to 0.75 ha).

A series of more recent studies (Asner et al., 2010; Asner et al.,
2012; Mascaro et al., 2011) estimated biomass on the 1-ha scale
with precision of ~10%, i.e. similar to that found here for BA in our re-
gional model.

Asner et al. (2012) argue that Mean Canopy Profile Height should
be used rather than mean CHM as this has been shown to provide a
Table 5
Mean prediction error per site and per forest type in stand structure variables: basal area (B
unlogged old growth forest, LOF = Logged-over forest, MF = Spirotropis monodominant fo

Group (plot number n) PF (n=87) LOF (n=36) MF (n=2)

Variable Model

BA Nested model (M4) 1.0% −4.4% 3.1%
Mul. reg. (M2) 0.9% −2.7% 6.1%

Dens Mul. reg. (M8) 1.4% −1.4% −31.7%
Dg Mul. reg. (M12) 0.2% −1.5% 14.2%
“slight but consistent improvement”. This may indeed be the case
but could not be evaluated here since the LiDAR system employed
recorded only a single return pulse with low penetration and resulted
in a shallow canopy profile. However, since the extent of laser beam
penetration is determined by a complex interaction between the
laser signal and the characteristics of the vegetation (Chasmer et al.,
2006; Hopkinson, 2007) it may also be the case that mean top of can-
opy height is a more robust predictor than mean canopy profile
height. This may notably become an issue in comparative studies
where systems and acquisition parameters are likely to differ. As dis-
cussed above, CHM statistics are not insensitive to variations in acqui-
sition parameters, but may nevertheless be more stable than statistics
extracted from canopy profile. We suggest that, whenever possible,
both approaches should be followed through at this stage.

Our regional multiple regression model therefore compares well
with previously published studies conducted in tropical forest using
either large footprint full wave (Drake et al., 2002) or small footprint
discrete return LiDAR (Asner et al., 2010). This may partly be due to
larger field plots than in previous studies and which tended to reduce
the noise on predicted surface-based forest structure parameters
(Frazer et al., 2011). Increasing plot size also reduces the border-to-
surface ratio (and thereby reduces the weight of borderline individ-
uals) and increases border length, thereby decreasing the likelihood
of strong omission/commission imbalances. (Mascaro et al., 2011)
using the 50-ha forest dynamics plot in Barro Colorado Island found
in particular that this border effect became negligible for plots of
about 1 ha.

Stratification into homogeneous forest types is likely to increase
model precision for AGB even more significantly than for the other
stand parameters considered here since stratification by site or forest
type is expected to reduce the dispersion in h-d relations and the
dispersion in plot mean wood density. For instance, we found that
29% of the variance in plot mean wood density could be attributed
to the site, after excluding extreme values from secondary forest,
Spirotropis-dominated forest and four plots where no taxonomic in-
formation was available. This supports a previous observation that re-
gional scale variations in plot mean wood density are very marked in
the Amazon basin (Baker et al., 2004).

5. Conclusion

Plot AGB estimates derived from field measurements can be se-
verely biased if individual tree biomass is estimated without consider-
ing tree height. This bias is due to spatial variations in plot average h–d
relations. In the study described herein, we therefore focused on
predicting BA and its components (stand density and mean quadratic
diameter Dg), rather than AGB.

Our results support earlier independent work that highlighted the
great potential of LiDAR for remote sensing tropical forest structure
parameters. Regional linear models of single or multiple canopy
LiDAR metrics are applicable across sites and forest types and provide
estimates of BA (or its components) or AGB with reasonable accuracy
(relative RMSEP less than 10% for BA). Models based on a single re-
gression per site performed almost on a par with multiple regression,
non-site specific models. Multiple regression site-specific models
A), Quadratic mean diameter (Dg) and stand density (dens); Forest type coded as PF=
rest, SF = 32-year-old secondary forest.

SF (n=4) MPB (n=17) NOU (n=10) PAR (n=85) PSE (n=17)

1.9% 8.9% −1.2% −2.0% −2.3%
−4.0% 9.1% −0.7% −1.4% −3.1%
−0.2% 9.5% 2.2% −1.0% −5.9%

1.2% 2.0% −1.8% −0.6% 1.9%

image of Fig.�4
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were significantly more precise but tended to lack prediction robust-
ness given the associated reduction in calibration data available per
site.

Less than 10% of the Mean Squared Error of Prediction in the re-
gional site-independent model is likely to stem from error affecting
data collection. This suggests that there is considerable scope for im-
proving model accuracy. A large proportion of the prediction error is
believed to originate from idiosyncratic differences between forest
types in the way LiDAR statistics relate to forest structural variables.
The error due to the heterogeneity of forest types could be reduced
by first stratifying the forest into homogeneous types (with respect
to the LiDAR-to-forest structure relationship) and adjusting specific
models per stratum. It remains to be ascertained whether the seg-
mentation of forest types from LiDAR data (and possibly other type
of remotely sensed data) could be used to efficiently identify
these homogeneous types and by how much error could be reduced.
Another—non-exclusive—strategy would be to improve stem density
estimates which are far less accurate than quadratic mean diameter
estimates (Table 2). This seems worth exploring since the nested ap-
proach to BA prediction performed almost as well in our study as the
direct regression approach. Both paths (stratification and improve-
ment in stem density estimation) may benefit from extracting texture
indices from CHM instead of simple frequency-based statistics as
were used here.
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