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Abstract 

Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is 

critical to quantifying the global carbon budget. Allometric models provide cost-effective 

methods for biomass prediction. But do such models vary with ecoregion or plant functional 

type? We compiled 15,054 measurements of individual tree or shrub biomass from across 

Australia to examine the generality of allometric models for prediction above-ground 

biomass. This provided a robust case study because Australia includes ecoregions ranging 

from arid shrublands to tropical rainforests, and has a rich history of biomass research, 

particularly in planted forests. 

 

Regardless of ecoregion, for five broad categories of plant functional type (shrubs; 

multi-stemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of 

high wood density; and other trees of low wood density), relationships between biomass and 

stem diameter were generic. Simple power-law models explained 84-95% of the variation in 

biomass, with little improvement in model performance when other plant variables (height, 

bole wood density), or site characteristics (climate, age, management) were included.  

 

Predictions of stand-based biomass from allometric models of varying levels of 

generalisation (species-specific, plant functional type) were validated using whole-plot 

harvest data from 17 contrasting stands (range: 9 to 356 Mg ha-1). Losses in efficiency of 
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prediction were < 1% if generalised models were used in place of species-specific models. 

Furthermore, application of generalised multi-species models did not introduce significant 

bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of 

stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. 

Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend 

use of generic allometric models based on plant functional types. Development of new 

species-specific models is only warranted when gains in accuracy of stand-based predictions 

are relatively high (e.g. high-value monocultures).  

 

Introduction 

Vegetation is an important sink within the global carbon budget, with carbon storage 

facilitated by uptake of atmospheric carbon dioxide through photosynthesis (Le Quéré et al., 

2015). Ground-based information on the carbon storage in vegetation is critical for 

calibrating carbon budgets, largely calculated using remote sensing metrics (e.g. Haverd et 

al., 2013; Mitchard et al., 2013; Chen et al., 2015), or regional carbon accounting models 

(e.g. Richards & Evans 2004; Paul et al., 2015a,b). In addition, accurate ground-based 

estimates of biomass are important for the assessment and management of wood and biomass 

products (e.g. Canadell & Raupach 2008), fire hazard (van der Werf et al., 2010), habitat 

suitability (e.g. Hatanaka et al., 2011), and water yield and quality within catchments (e.g. 

George et al., 2012).  

 

Typically, ground-based estimates of biomass are obtained by applying allometric 

models to field measurements of biometric data such as stem diameter or plant height (e.g. 

Picard et al., 2012). Two key decisions frame the construction of allometric models to predict 

total above-ground biomass (AGBIndiv, oven-dry weight of an individual plant). The first is 
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deciding which predictor variable(s) to use. Stem diameter (D, typically measured over bark 

at 130 cm height above the ground) is commonly used because it can be easily measured with 

high accuracy (Husch et al., 2003, but see Clark, 2002 for issues in some tropical forests). 

Plant height (H) and bole wood density (ρ) are also often considered, since D2Hρ is expected 

to strongly correlate with AGBIndiv (e.g. Chave et al., 2005). The second decision relates to 

the level of generalisation to be used. Most allometric models are based on relatively small 

species-specific datasets obtained from local areas, and often ignore variation across both 

species and sites (Henry et al., 2011; de Miranda et al., 2014). 

 

Localised species-specific models provide the most accurate estimates of AGBIndiv for 

the domain for which they were developed (e.g. Wirth et al., 2004; Williams et al., 2005; 

Basuki et al., 2009; Paul et al., 2013a,b; Ngomanda et al., 2014), but can generate substantial 

uncertainty when applied outside the range of calibration, with potential for significant biases 

(20-200%, e.g. Ketterings et al., 2001; Wirth et al., 2004; Chave et al., 2014; Ishihara et al., 

2015). The development of new models for new local area-by-species combinations is costly, 

particularly for woody ecosystems where there are numerous species. 

 

Generalised allometric models can greatly simplify AGBIndiv estimation by assuming 

that all individuals, irrespective of species or site, are represented by one allometric 

relationship. Data from large numbers (100s to 1000s) of destructively-sampled plants can 

then be used to re-parameterise new broadly applicable models (e.g., Brown et al., 1989; 

Jenkins et al., 2003; Moore 2010; Paul et al., 2013a,b; Chave et al., 2005, 2014; Gonzalez-

Benecke et al., 2014; Ishihara et al., 2015). Models developed with such relatively large 

sample sizes have the added advantage of greatly reducing uncertainty in parameter estimates 

(Chave et al., 2004; van Breugel et al., 2011; Roxburgh et al., 2015) when compared to most 
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(~75%) localised species-specific models that are developed with N < 50 trees (e.g. Zianis et 

al., 2005; Genet et al., 2011). 

 

Because it is physically difficult to collect and assemble AGBIndiv data, many 

questions about the usefulness of generic approaches and models remain unanswered. For 

example, it is unclear to what extent data should be pooled or separated according to their 

physical, phylogenetic and/or phenological characteristics; often defined as plant functional 

types (e.g. trees vs. shrubs (Paul et al., 2013a), multi-stemmed vs. single-stemmed trees (Paul 

et al., 2013a,b), angiosperms vs. gymnosperms (Chojnacky et al., 2014)). Similarly, we need 

to quantify the extent to which the use of multi-species allometric models introduces bias to 

AGBIndiv predictions for some species relative to others. Finally, we need guidance as to 

which types and combinations of predictor variables (plant dimensions, bioclimatic variables, 

and stand characteristics) will best predict AGBIndiv using generalised models.  

 

At the scale of individual plants, allometry-predicted AGBIndiv can be validated by 

independent sampling of new plants. However, it is difficult to ascertain whether sampled 

plants have been truly selected at random. If specific criteria have been applied for selection 

(e.g. only healthy trees) the resulting allometric model may be inherently biased. A true test 

of this possible bias would be a direct validation of stand-based allometric model predictions 

of above-ground biomass (AGBStand) against that measured through whole-plot harvesting. 

Such testing has been undertaken in monoculture hardwood forests (Arthur et al., 2001; Paul 

et al., 2013b), and in mixed-species vegetation (Búrquez & Martínez-Yrízar, 2011; Paul et 

al., 2013a), but not using generic allometric models.  
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Australia provides a good case study for testing generalised allometric models given it 

has both a long history of research contributing to AGBIndiv datasets (e.g. Holland, 1969; 

Forrest & Ovington, 1970; Attiwill, 1979), and spans a broad range of ecoregions, ranging 

from arid shrublands to tropical rainforests, with plant functional types varying from shrubs 

and short multi-stemmed trees through to some of the largest trees in the world (e.g. Sillett et 

al., 2015; Specht & Specht, 2002, Specht & Specht, 2013). Improving methods for 

quantifying biomass and its carbon content in Australia is also of global significance given 

high inter-annual variability in biomass carbon globally (Houghton et al., 2012; Ballantyne et 

al., 2015), with semi-arid ecosystems in Australia playing a significant role (Poulter et al., 

2014).  

 

For this project, an AGBIndiv dataset of unprecedented size was compiled, composed 

of 15,054 destructively-measured individuals from both managed (i.e. planted) and natural 

ecosystems across Australia. This dataset was used to assess whether diameter-based 

allometric models of biomass were improved: (i) by the inclusion of other plant variables 

(e.g. height, wood density); (ii) by the inclusion of site characteristics (e.g. climate, age, 

management); and (iii) when based on species rather than broader categories like plant 

functional groups. Our objectives were first, to recommend the most appropriate allometric 

model(s) for estimating AGBIndiv in Australian ecosystems, and secondly, to quantify bias of 

the recommended model(s) when tested against direct measurements of AGBStand obtained 

using whole-plot harvesting across a range of contrasting sites. 
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Materials and methods 

Dataset 

Datasets of AGBIndiv were obtained from destructive harvesting of 15,054 individual 

trees and shrubs. Data represented a range of managed and natural woody ecosystems across 

826 sites in various ecoregions of Australia (Fig. 1), and obtained from numerous published 

and unpublished sources (Table S1; Paul et al., 2015c). They included 274 species, 53 of 

which had N > 50 individuals, sufficient for developing species-specific models that provide 

a reasonable approximation of AGBIndiv given population level variability (Roxburgh et al., 

2015). To utilise the wider dataset, we categorised all species into plant functional types as 

described below. 

 

Plant functional types 

Five categories of plant functional types of unique physiognomic growth form (Gitay 

and Noble 1997) were included: (i) shrubs or small trees characterised by being relatively 

short (generally < 2 m height) and typically multi-stemmed or highly branched, with a 

relatively small (< 7 cm) stem diameter (FShrub); (ii) multi-stemmed hardwood (angiosperm) 

trees, including mallees from the genus Eucalyptus, and trees from the genus Acacia (FMulti); 

(iii) typically single-stemmed hardwood trees from the genus Eucalyptus and closely-related 

genera of Corymbia and Angophora (FEuc); (iv) other tree species that typically have single 

stems and relatively high wood density (mean 0.67 g cm-3) (FOther-H); and (v) other trees, 

namely conifers from the genera of Pinus, Araucaria and Agathis, that typically have single 

stems and relatively low stem wood density (mean 0.40 g cm-3) (FOther-L). Each of these five 

plant functional types could also be further sub-categorised as indicated in Fig. S1. 

Most of these plant functional types include plant species with distinctive branch 

architecture and/or stem wood density. A highly branched architecture is a unique 
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characteristic of species within FShrub, while a unique characteristic of conifer species within 

FOther-L is a relatively low wood density. By comparison, such distinctions were less obvious 

between the three categories of trees of relatively high wood density (FMulti, FEuc and FOther-H), 

with their categorisation based on two issues of practicality. The first related to the height at 

which stem diameter was typically measured in multi- and single-stemmed trees, resulting in 

the FMulti category having different predictor variables to that of the other two hardwood tree 

categories. When compared to single-stemmed trees, multi-stemmed mallee eucalypts and 

shrubs have stem diameter measurements taken closer to the ground (usually 10 cm height) 

below the point at which the stem forks (e.g. Paul et al., 2013a,b). Second, for practicality, 

the relatively heterogeneous category of FOther-H was segregated from the much more widely 

sampled FEuc category that solely represented typically single-stemmed Eucalyptus trees of 

relatively high wood densities (Ilic et al., 2000). 

 

The majority of the 15,054-tree dataset comprised two categories of plant functional 

types, namely FEuc (40%) and FMulti (36%), largely representing the ecoregions that supported 

either ‘Mediterranean forests, woodlands and scrub’, or ‘Temperate broadleaf and mixed 

forests’ (Fig. 2). Although FOther-L represented only 5% of the dataset, this category was also 

largely found in these two ecoregions. In contrast, FShrub and FOther-H comprised 16% and 3% 

of the dataset, respectively, but were sourced from a wide range of ecoregions.  

  

Explanatory variables 

The primary set of collated data included three explanatory variables for AGBIndiv: 

stem diameter (D, over bark, cm), height (H, m) and, as described below, measured, 

estimated or derived basic density of stem wood (ρ, g cm-3, typically measured as oven-dry 

mass per green volume of stem at a standard height of 130 cm, Table 1). Secondary data 

relating to the site from which an individual was sampled were also collated (Table 1). These 
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included whether the site was ‘natural’ (i.e. naturally regenerated shrubland, woodland, or 

forest) or managed (i.e. human-induced establishment via either nursery stock, direct seeding 

or human-induced natural regeneration). If the stand was managed, it was also recorded 

whether or not the stand was relatively young, defined as < 20 years since establishment. 

Climatic data were collated (BoM, 2015; mean data based on 30-year period 1961-1990, 

resolution of approximately 2.5 km) and included long-term mean annual precipitation 

(MAP, mm yr-1) and mean annual temperature (MAT, oC).  

 

Measurements and data cleaning 

Conventionally, tree diameter is measured at 130 cm (D130) height above ground level 

to avoid marked stem buttress swelling or exposed lignotubers in some species, and thus 

better represents the diameter of a log above the stump. Consequently, most trees (FEuc, FOther-

H and FOther-L) had D130 measurements. For species of FShrub and FMulti, where D130 

measurements introduced errors due to the presence of multiple stems at this height, or where 

the individual was too small to have a measurable D130, D was typically measured at 10 cm 

height above the ground (D10). For such multi-stemmed individuals, a single, pooled D 

estimate was obtained from the quadratic mean - representing the sum of the cross sectional 

areas of individual stems (Chojnacky & Milton, 2008).  

 

For many individuals in the dataset, D was measured at multiple heights, allowing 

derivation of generic relationships for prediction of D at a given height based on D measured 

at another height (Table S2). These relationships were used to ‘gap-fill’ D estimates where 

required, with D10 and D130 estimated for 33% and 14% of the 15,054 individuals, 

respectively. Similarly, generic relationships were derived to ‘gap-fill’ H estimates of an 

individual through the development of generic relationships between H and either D10 or D130 
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(Table S2). In this way, H was estimated for 15% of the individuals in the database. The 

wood specific gravity ρ was measured (or estimated based on local data) in only 8% (or 4%) 

of individuals in the dataset. For individuals where ρ was not measured, estimates were 

derived based on the species (49% of the dataset), or if unavailable, the genus (39% of the 

dataset) using the global wood density database (Chave et al., 2009; Zanne et al., 2009). 

Very small individuals (i.e. D10 < 0.3 cm) were not included in the database. Such 

individuals are unlikely to conform to biomass scaling laws typical of woody plants given 

relatively little secondary thickening (e.g. Niklas, 2004; Enquist et al., 2007). Data for a 

further 72 individuals from 51 sites (and 24 sources) were also excluded as outliers. Here, 

individuals were defined as outliers if their measured AGBIndiv fell outside the 99.9% 

confidence interval of prediction of the appropriate plant functional type model. Although the 

AGBIndiv of these outliers were assumed to come from a normally-distributed population and 

had no major influence on model fit, they were nonetheless removed on the basis that they 

were highly unlikely values of AGBIndiv for the measured dimensions, and were most likely 

due to errors in data entry of field measurements of fresh weights.  

 

Statistical analysis 

A simple power-law allometric model was used to predict AGBIndiv based on the 

explanatory variable, X (Eq. 1). Eq. 1 is linearized by logarithmic transformation (Eq. 2) so 

that coefficients (a and b) may be estimated using ordinary least squares linear regression 

analyses, with data corrected for heteroscedasticity, such that residual errors were normally 

distributed on the logarithmic scale (ε; which becomes a multiplicative error in the power 

model, ε’, Picard et al. (2012)). 

  AGBIndiv = a X b+ ε’      (1) 
ln(AGBIndiv)= ln(a) + b ln(X) + ε    (2) 
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Xiao et al. (2011) found that Eq. 2 produced more accurate estimates of biomass than 

alternative nonlinear fitting. Eq. 2 was applied to the entire dataset (universal model, 

AllUniversal), and to the datasets for each of the five plant functional types: FShrub, FMulti, FEuc, 

FOther-H and FOther-L. The simplest versions of the models depicted by Eq. 2 had X = D, where 

D was D130 (or D10) for FEuc, FOther-H and FOther-L, and by necessity, D10 for FShrub, FMulti, and 

hence, AllUniversal. 

 

When back-transforming from logarithmic to natural scales (i.e. to obtain the estimate 

of AGBIndiv), a correction factor (CF) is required to remove bias. Nine different CFs were 

reviewed by Clifford et al. (2013), and the MM CF (Minimise Mean Square Error CF, Shen 

and Zhu 2008) was recommended for predicting biomass of new trees or shrubs as it gave 

relatively low prediction bias. Because the value of the MM CF varies with D, a range of 

MM CF values are reported here. The more commonly used Baskerville CF (Baskerville 

1972, which assumes the variability is constant across D) may lead to biased AGBIndiv 

estimates, particularly for individuals that have a D that is appreciably larger or smaller than 

the mean D used to develop the allometric model. But in this study the MM and Baskerville 

CF’s were consistent, at less two decimal places, due to our sample sizes. Therefore, although 

the MM CF is recommended, we also report the Baskerville CF for reference. 

 

To confirm the validity of tested models, we checked: (i) that there was no 

heteroscedasticity by confirming standardised residuals were not correlated with the 

ln(AGBIndiv), and (ii) for influential points (i.e. data points having a Cook’s D value > 1; 

Cook, 1979). Then, performance of valid models was quantified using five fit statistics: (i) 

standard errors of the coefficients ln(a) and b, (ii) residual standard error of Eq. 2, RMSE, (iii) 

adjusted coefficient of determination, R2, (iv) 95% confidence interval of the slope and 
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intercept of the line of best fit to the plot of observed versus predicted back-transformed 

AGBIndiv, and (v) average bias, or mean of the residuals expressed in absolute terms and 

provided as a proportion (%) of the observed value (i.e. mean absolute prediction error 

‘MAPE’, using back-transformed AGBIndiv predictions) (Sileshi 2014).  

 

Additional measures of accuracy were used to aid comparisons among alternative 

models with differing numbers of variables. These included Mallows’ Cp statistics (Mallows, 

1973) and Akaike’s information criterion (AIC, Burnham & Anderson, 2004). Models of poor 

fit have Cp values greater than the number of model parameters (including the intercept), 

while the lowest AIC indicates the most parsimonious model. The Bayesian information 

criterion (BIC) was also assessed (Burnham & Anderson, 2004), but not reported as it 

provided very similar indications to AIC. 

 

Testing compound predictor variables including height and wood density  

To explore whether accuracy of AGBIndiv prediction could be improved by using a 

compound predictor variable cf. D-alone, we tested three alternatives of X: (i) D alone, based 

on a simple geometrical argument that should hold across forests (Chave et al., 2005), (ii) the 

compound stem volume index D2H, and (iii) the compound stem mass index D2Hρ. We 

calculated for each dataset, the change in fit statistics (RSME, R2 and AIC) between D-alone 

based model and each of the two alternative compound predictor variables, i.e.: D2H, and 

D2Hρ. For example, for the FEuc model, changes in fit statistics were assessed for (FEuc using 

D-alone) – (FEuc using D2H), and for (FEuc using D-alone) – (FEuc using D2Hρ). To examine 

uncertainties associated with the inclusion of estimates, rather than direct measured, of H and 

ρ (Sileshi et al., 2014), these analyses were repeated using sub-sets of data that only included 

individuals for which H was measured (when testing the D2H predictor variable), or that only 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

included individuals for which both H and ρ were measured (when testing the D2Hρ predictor 

variable). 

 

Testing inclusion of site-factor predictor variables  

General linear model analyses were used to assess whether accounting for site factors 

improved the performance of Eq. 2, as indicated by an improvement in the fit statistics of 

RSME, R2 and AIC. The site factors tested included: (i) stand age (<20 yrs, or >20 yrs), (ii) 

management (natural or managed vegetation), (iii) ecoregion (Fig. 1), (iv) MAT, and (v) 

MAP. Interactions of these site-factors with ln(D) were included in the model only where 

they were significant.  

 

Testing levels of generalisation   

Three approaches were used to determine the impact of the level of generalisation of 

allometric models (Eq. 2) on accuracy of AGBIndiv prediction. First, using the entire dataset, 

general linear model analysis was used to assess whether the fit statistics (RSME, R2 and AIC) 

of ln(AGBIndiv) prediction from ln(D) could be enhanced by accounting for the supplementary 

categorical variable of plant functional type in the AllUniversal model. Second, using each 

dataset of the five plant functional types, increases in such fit statistics were assessed when 

using the less generalised plant functional type model rather than the AllUniversal model. Third, 

the 53 species that had N > 50 (and which thus provided reasonable prediction of AGBIndiv 

given population level variability, Roxburgh et al., 2015) were used to examine improvement 

in accuracy with decreasing level of generalisation in allometric models. We calculated for 

each species dataset, the change in fit statistics (RSME, R2 and AIC) between the Alluniversal 

model and each of the two levels of generalisations, i.e.: functional types model, and species-

specific model. For example, for a species of eucalypt such as E. wandoo, changes in fit 
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statistics were assessed for (FEuc) – (Alluniversal), and for (Species-specific model for E. 

wandoo) – (Alluniversal).  

 

Model performance 

One concern with the application of generalised (multi-species) allometric models, 

such as those based on plant functional type, is that not all species are well represented by the 

model. In some cases, this may lead to significant bias. To test bias frequency, predicted 

AGBIndiv (and its associated 95% confidence interval) was attained at D10 values of 10, 50 

and 100 cm using both species-specific models and the more generalised plant functional 

type or universal models. If the 95% confidence interval of prediction using a generalised 

model largely overlapped with that from the most accurate model (species-specific) for that 

species, then it was assumed that significant bias had not been introduced.  

As a final test of accuracy of allometric models, results were collated from 17 stands 

of contrasting structure and environment where whole plots of vegetation were harvested to 

obtain ‘true’ and direct measurements of stand-based AGBStand (Table 2). Inventories of 

species and D from each of these 17 stands were used to apply the models of best fit 

identified in this study, and to sum the predicted AGBIndiv to facilitate a comparison of 

observed and predicted AGBStand. The relationship between observed and predicted AGBStand 

was used to determine the overall accuracy and bias of generalised predictions at the stand-

scale. These predictions were made using three scenarios where the level of generalisation of 

the applied models differed. In the first scenario, we used species identity of each individual 

to apply the relevant species-specific model and then sum individual tree biomass to estimate 

AGBStand. For species where no species-specific model was available, the appropriate plant 

functional type model was applied. Second, species identification and/or species-specific 

models were assumed to be unavailable, and so only plant functional type models were 
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applied. Third, species identification, and models based on species or plant functional type 

models were assumed to be unavailable, and so the universal model (Alluniversal) was applied. 

Using plots of observed versus predicted AGBStand, the 1:1 line was used to indicate the 

distribution of residuals, and display any bias. Model efficiencies (EF, Soares et al. 1995, 

expressed as a percentage) were used to assess whether the prediction performance differed 

among the three scenarios. In addition, we calculated slope and intercept of the line of best fit 

between observed and predicted AGBStand, and the resulting prediction quality statistics 

RMSE and MAPE, for each of the three scenarios.  

 

Results  

Allometric models 

Even when based on D-alone, the model (Eq. 2) precisely predicted AGBIndiv across 

the entire database using either AllUniversal, or any of the five categories of plant functional 

types: FShrub, FMulti, FEuc, FOther-H and FOther-L (Fig. 3). The amount of variation in ln(AGBIndiv) 

explained by these simple generalised models was 94-98%, with errors (RMSE) of 0.19-0.49 

(Table 3). Back-transformation of ln(AGBIndiv) predictions (using the MM correction factor) 

indicated relatively high uncertainty in the prediction of AGBIndiv for any given tree or shrub 

of a given D (see 95% confidence intervals of prediction, Fig. 4). However, these individual 

errors largely cancel out when predictions are made across a wide range of data. Thus, these 

generalised models provided reasonable accuracy across the datasets, explaining 84-96% of 

variation in AGBIndiv (Fig. 4), with a MAPE range of 15-41% (Table 3).  

 

There was some evidence that the simple power-law allometric model was not 

appropriate for FOther-L plant functional types, with under-prediction of AGBIndiv in larger 

trees and over-prediction of AGBIndiv in smaller trees. However, if small saplings (D130<10 
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cm) were excluded, the performance of the power-law model was satisfactory, with the 

RMSE of ln(AGBIndiv) prediction decreasing from 0.273 (data not shown) to 0.189 (Fig. 3). 

 

Compound predictor variables including height and wood density  

Addition of H and/or ρ in a compound predictor variable in Eq. 2 did not markedly 

influence model performance compared with the D-based model in predicting ln(AGBIndiv), 

with changes in RMSE and R2 less than ±0.06 and ±0.02, respectively  (Table 4). Similar 

results were obtained for a sub-set of the data for which H or ρ were measured rather than 

estimated (see values in parentheses, Table 4), noting that tests of ρ inclusion were based on 

limited data because only 12% of the dataset had measured or estimated ρ values. 

 

Inclusion of site-factor predictor variables 

Since the addition of H and/or ρ in a compound predictor did not markedly influence 

performance of the D-based model in predicting ln(AGBIndiv), only models based on D were 

used to test the benefits of including site-factor predictor variables. When compared to using 

D-alone, accounting for site-factors resulted in negligible model improvements, with the 

increase in explained variation of ln(AGBIndiv) being consistently < 0.4% (Table 5). For 

example, accounting for whether or not the individual was from a young (< 20 years old) 

stand, or whether or not the individual was from a stand that was managed, resulted in RMSE 

and AIC decreases of < 0.03 and < 5%, respectively. Furthermore, these site factors had 

negligible influence across all models based on plant functional types where a majority of the 

individuals were from young planted stands (e.g. FMulti, FOther-H, FOther-L). Accounting for 

ecoregion reduced RMSE by < 0.03% and AIC by < 8%. If ecoregion was added as 

supplementary variable, Cp was sometimes greater than the number of explanatory variables 

used, suggesting a poor model fit. Inclusion of numerical variables of MAT or MAP led to 
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even less improvement in predictions, with RMSE reduced by < 0.01%, AIC reduced by < 

3%.  

 

Levels of generalisation  

Addition of plant functional type as a categorical explanatory variable improved 

performance of the AllUniversal model (RMSE reduced by 0.04, R2 increased by 0.01%, and 

negative changes in AIC, Table 6). As further evidence of improvements in prediction 

accuracy by reducing level of generalisation, there was a consistent increase in fit statistics 

when, for each plant functional type, the relevant plant functional type model was applied in 

place of the AllUniversal model. When generalising at the level of plant functional type there 

was a decrease in the RMSE of 0.01-0.25, with R2 increasing by 0.00-0.05% (Table 6). Gains 

in accuracy when generalising at the plant functional type level were particularly pronounced 

for FOther-L (or FMulti) where increases in RMSE were 0.25 (or 0.05), compared to < 0.02 for 

the other categories of plant functional type. When considering the reduced dataset for FOther-L 

(i.e. excluding saplings with D130<10 cm, N=455), gains in accuracy were similarly larger 

when using a model specific for that dataset than when applying the AllUniversal model (i.e. 

∆RMSE of -0.162, ∆R2 of 0.150, data not shown). 

 

Although results are not shown here, generalising at the level of sub-categories of 

plant functional type (Fig. S1) showed little or no improvement in accuracy of ln(AGBIndiv) 

predictions when compared to those obtained when using models generalised at the level of 

plant functional type. 
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As expected, when applied to datasets restricted to focal species, the greatest accuracy 

of prediction in ln(AGBIndiv) was attained using the least generalised model – i.e. models 

specific to a given species. Compared to the AllUniversal model, plant functional type models 

yielded some modest improvements, but were still not as good as species-specific models 

(Table 7). Gains in accuracy of ln(AGBIndiv) predictions could be made by reducing the level 

of generalisation from functional type to species, especially for FShrub and FEuc.  

 

Model performance  

Fig. 5 illustrates the overlap of the 95% confidence interval of generalised model 

prediction with that attained using the species-specific model for predicting ln(AGBIndiv) 

under the scenarios of assuming an observed D10 of 10, 50 and 100 cm. On average, 74% (SD 

14%) of the confidence interval of prediction obtained using the models generalised at the 

level of plant functional type overlapped with that attained using the species-specific model. 

Tested against the AllUniversal model, this figure decreased to 67% (SD 13%), largely because 

two key species of FOther-L were relatively poorly represented by the AllUniversal model. 

However for most tested species, results were similar (with mean ±8%, SD 5%) when 

comparisons were made between the confidence intervals of species-specific models and two 

alternative, more generalised models.   

 

Of the 53 species tested, only four (or 8%) had < 55% overlap in confidence intervals 

of prediction obtained using generalised and species-specific models. These four species were 

Eucalyptus vegrandis, Acacia calamifolia, E. pilularis and E. muelleriana. For Acacia 

calamifolia, this was partly attributable to the relatively low RMSE of prediction of the 

species-specific model resulting in relatively small confidence intervals of prediction relative 

to the more generalised models. However, generalised multi-species models poorly 
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represented the allometry of all four of these species, indicating potential for significant bias 

in up to 8% of the tested species generalised models were applied. 

 

When allometry-predicted AGBStand was compared to that observed by direct whole-

plot harvesting across 17 contrasting stands (Table 2), prediction quality was not affected by 

increasing the level of generalisation of models. Differences in efficiency of prediction of 

AGBStand were < 1% between scenarios, while differences in MAPE were < 5.61% between 

scenarios (Fig. 6).   

 

Despite good overall prediction quality, allometry-predicted AGBStand introduced 

significant bias, even when applying species-specific models. However, this bias was largely 

independent of the level of generalisation of allometry applied. For example, for the Leos 

site, where measured AGBStand was 113.6 Mg ha-1 (Table 2), the absolute prediction error (or 

bias) was 24-36% regardless of the model applied. 

 

Discussion 

Allometric models 

Results obtained here confirmed that a simple power-law model largely encapsulated 

scaling laws common to most woody plants (e.g. Niklas, 2004). There may be bias in 

AGBIndiv prediction for any given individual tree or shrub. But across a wide range of 

individuals, AGBIndiv may be predicted using generalised allometric models with reasonable 

accuracy (i.e. MAPE of 15-41% (Table 3), and RMSE of 16-391 kg and R2= 0.84-0.96 (Fig. 

4)) using D as an explanatory variable. Despite these models being based on AGBIndiv 

datasets that were larger, and from a broader range of vegetation types than previously 

collated for Australia, the fit statistics obtained were comparable to generalised allometric 
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models for AGBIndiv previously developed for much smaller datasets (e.g. Williams et al., 

2005; Montagu et al., 2005; Jonson & Freudenberger 2011; Paul et al., 2013a,b).  

 

Our results suggest that increasing the domain of application of generalised allometric 

models for AGBIndiv (i.e. being based on datasets from a wider range of ecoregions and from 

a range of plant types etc.) does not substantially jeopardise their accuracy of prediction. Our 

results provide further evidence of the effectiveness of generic AGBIndiv allometric models 

developed from large, compiled datasets, consistent with comparable studies in tropical 

forests (Chave et al., 2005, 2014, Vieilledent et al., 2012); for different forest types in the 

U.S.A (Chojnacky et al., 2014); and for different forest types in China (Ali et al., 2015). 

Development of such generalised models is an appropriate approach to extending the 

geographical application range of otherwise limited, and often localised, species-specific 

models. Collation of datasets to develop such generalised allometric models seems preferable 

to either: (i) making parameters of existing localised species-specific models available in a 

database to facilitate the selection of the most appropriate models for new specific areas of 

interest (e.g. Ter-Mikaelian & Korzukhin, 1997; Zianis et al., 2005; Henry et al., 2013), or 

(ii) applying existing localised species-specific models to generate pseudo-observations to 

develop more generalised models (e.g. Pastor et al., 1984; Zianis & Mencuccini, 2004; 

Muukkonen 2007; Chojnacky et al., 2014).  

 

In the present study, allometry-predicted AGBIndiv tended to be least accurate for the 

multi-stemmed plant functional types of FShrub and FMulti (Table 3). Many others (e.g. Buech 

& Rugg, 1995; Chojnacky & Milton, 2008; Paul et al., 2013a,b; Berner et al., 2015) found D 

to be the strongest predictor of AGBIndiv in such multi-stemmed individuals. However in 

allometric models of AGBIndiv for multi-stemmed trees, some workers (e.g. Mosseler et al., 
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2014; Matula et al., 2015) used D of only a given number (e.g. 3 or 5 stems) of the largest 

stems, yet did not test whether it resulted in an increased accuracy of prediction above that 

obtained if an equivalent D was calculated and applied. Hence further work is required to 

assess alternative methods for calculating D in multi-stemmed individuals, and determining 

the method that provides the highest accuracy of prediction of AGBIndiv. There is also a need 

to have clear and consistent protocols for measurement of D.  

 

Another aspect of these results that requires further investigation is whether there may 

be improvement on the simple power-law model for tree species of relatively low wood 

density. For the FOther-L category of species, a single simple power-law model did not 

accurately predict AGBIndiv across the full range of tree sizes. For these species, options for 

weighted non-linear modelling should be investigated as an alternative to the power-law 

model provided here (i.e. for FOther-L trees of D130 > 10 cm).   

 

Compound predictor variables including height and wood density  

We found including H and ρ in addition to D in a compound predictor variable did not 

markedly improve ln(AGBIndiv) predictions, even when using only measured values (Table 4). 

This finding supports the conclusions of others (e.g. Molto et al., 2013; Sileshi, 2014; Kuyah 

& Rosenstock, 2015) that using D alone is an appropriate predictor of AGBIndiv as it 

minimises costs associated with these additional biometric measurements, and also the 

uncertainty resulting from measurement and prediction errors of H and/or ρ.  

 

The fact that H is often correlated with D (e.g. Pérez-Cruzado & Rodríguez-Soalleiro, 

2011; Mugasha et al., 2013; Ishihara et al., 2015) may largely explain why inclusion of H as 

an additional predictor did not markedly influence the performance of the D-based models. 
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Indeed scaling theory of larger woody plants predicts that H scales with diameter to the 2/3 

power (Niklas & Spatz, 2004). Nonetheless, although the inclusion of H may not be 

necessary to accurately predict AGBIndiv, there is evidence that it may be beneficial to include 

in allometric models of foliage biomass, which tends to be influenced by plant architecture 

(e.g. Picard et al., 2015).  

 

We make two suggestions as to why inclusion of ρ did not improve the predictive 

ability of the D-based model. The first is possible measurement errors. For example, ρ varies 

with height (e.g. Pérez-Cruzado & Rodríguez-Soalleiro, 2011; Wiemann & Williamson, 

2014), and with stand age or rates of growth (e.g. Ilic et al., 2000). Hence database-derived ρ 

values may have been erroneous due to the height and/or age at which ρ was measured (e.g. 

Molto et al., 2013). Second, most of our dataset was obtained from temperate regions, where 

ρ is typically less variable than, for example, among tropical trees (Swenson & Enquist, 

2007). This is consistent with ρ having greater predictive potential in AGBIndiv models for 

tropical trees (Chave et al., 2014) than was found in this study.  

 

 Inclusion of site-factor predictor variables 

Our study indicated that including site-related factors such as characteristics of the 

stand (stand age and management), and climatic characteristics (e.g. MAP, MAT), did not 

markedly improve the predictive ability of D-based models (increased R2 of <1%, Table 5). 

These results provided support to findings that while the allocation of AGBIndiv and plant 

architecture (i.e. the D-H relationship) may vary with site factors as individuals optimize their 

growth strategies, the impact on total AGBIndiv allometry appears to be negligible (e.g., 

António et al., 2007; Peichl & Arain, 2007; Feldpausch et al., 2011, 2012; Banin et al., 2012; 

de Miguel et al., 2014; Gonzalez-Benecke et al., 2014; Moncrieff et al., 2014; Hulshof et al., 
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2015). This may be due to the compensatory relationship between stem and canopy mass 

resulting in similar AGBIndiv for trees of the same D, but different partitioning to leaves, 

branches and stems (e.g. Kuyah et al., 2013). Hence, results obtained here support the claim 

that generalised models can be based on plant functional types rather than site factors such as 

climatic zones (Ngomanda et al., 2014). 

 

These findings contrast with previous research showing that the inclusion of 

additional stand-related variables such as stand age, density and/or productivity in allometric 

models may provide more accurate AGBIndiv predictions (Callaway et al., 1994; De Lucia et 

al., 2000; Genet et al., 2011; Alvarez et al., 2012; Lopez-Serrano et al., 2015). Such 

improvements are often interpreted as climatic impacts influencing predicted AGBIndiv via 

changes in the tree architecture (H-D relationship, e.g. Chave et al., 2014), and have led to 

recent debates over potential trade-offs between practical application and loss of accuracy 

when simple power-law models are used in preference to more complex models of AGBIndiv 

(e.g. Sileshi, 2014; Picard et al., 2015). Results obtained here indicate that this trade-off of 

loss of accuracy with the application of simple power-law models was relatively minor.  

 

Levels of generalisation 

Compared to the most generalized model (AllUniversal), the largest gains in predictive 

ability were attained when categorising the dataset at the level of species, but with little loss 

of accuracy when generalised to the level of plant functional type (Tables 6 & 7). These 

results were therefore consistent with previous work showing that generic multi-species 

models perform almost as well as the species-specific ones developed for that region (e.g. 

Feller 1992; Williams et al., 2005; Montagu et al., 2005; Mugasha et al., 2013; Paul et al., 

2013a,b; Mbow et al., 2014; Ali et al., 2015).  
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It is often suggested that plant functional attributes (e.g. ρ, apical dominance, and 

canopy architecture) may be genetically constrained as a result of adaption to environmental 

factors (e.g. Onoda et al., 2010; van Gelder et al., 2006; Banin et al., 2012). Such 

phylogenesis may account for differences in the AGBIndiv allometry between trees and shrubs 

found here, and by others (e.g. Paul et al., 2013a). Species of FShrub of relatively large size 

(e.g. D10 ca. 30-90 cm) had slightly lesser AGBIndiv than trees of the same D (Fig. 3). In 

contrast, multi-stemmed species (FMulti) tended to have relatively high AGBIndiv for a given D 

(Fig. 3). This may be attributable to their typical architecture of a large proportion of 

relatively heavy branches/small stems (e.g. Paul et al., 2013b) of relatively high ρ (Table 1).  

 

Although including ρ in compound predictor variables offered no measurable 

improvement to D-based models (Table 4), phylogenesis resulting in divergent stem anatomy 

and ρ may also largely account for the differences in AGBIndiv allometry between 

angiosperms and gymnosperms found here (i.e. FOther-L departing strongly from the AllUniversal 

model, Tables 6 & 7) and by others (e.g. Chojnacky et al., 2014; Hulshof et al., 2015). Lower 

average values of ρ for species of FOther-L (Table 1) explain why, for a given D, the AGBIndiv 

was relatively low when compared to most other tree species, particularly FEuc (Fig. 3). 

Although less evident from ρ measurement and estimates collated due to the high 

uncertainties in these datasets, such differences in stem anatomy may also be one of the 

reasons why species of FEuc (average ρ 0.77 g cm-3, Table 1) of large size (e.g. D10 > 50 cm) 

had relatively high AGBIndiv for a given D when compared to species of FOther-H (average ρ 

0.67 g cm-3, Table 1) (Fig. 3).  
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There is evidence that ρ varies greatly among species in Australia (e.g. Onoda et al., 

2010). Further refinement and consistency in protocols used to measure ρ is required to 

confirm whether, as observed by others (e.g. van Breugel et al., 2011; Fayolle et al., 2013; 

Chojnacky et al., 2014), ρ may be more similar within than between different plant functional 

types, resulting in each having a unique AGBIndiv allometry. Hence, although ρ was found not 

to impact the model directly via a compound predictor variable, it may nonetheless have an 

indirect impact via influencing categories (i.e. groups of species, or plant functional types) 

upon which generalised models are developed. 

 

Model performance 

Species datasets for which we had confidence in prediction of AGBIndiv using species-

specific models (i.e. 53 species where N > 50) provided a test for bias in predictions with the 

application of more generalised models. Most (92%) demonstrated no significant bias, with 

the 95% confidence interval of prediction obtained using generalised allometry overlapping 

with that attained using the species-specific model in 55-85% of the cases (Fig. 5). In 

contrast, species-specific models appeared to avoid risks of significant bias in AGBIndiv in 

about 8% of the species studied. Thus, to minimise the potential for significant bias when 

accurate predictions are required at the individual level, representative species-specific 

models (i.e. N > 50, Roxburgh et al., 2015) should be used when these are available (e.g. 

Table S3). However because allometry-predicted AGBIndiv are generally used to derive 

AGBStand, user decision on whether the additional costs associated with developing new 

species-specific models is justified should be based on the extent to which these more 

specific models improve accuracy (and particularly, reduce bias) at the stand level.  
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Stand-level validation of allometric models showed that there was relatively little 

added benefit (EF of AGBStand prediction increasing by <1%, and RMSE and MAPE 

decreasing by < 3.2 Mg ha-1 and < 5.6%, respectively) of using species-specific models when 

compared to more generalised models (Fig. 6). The stand of Leos (observed AGBStand of 

113.6 Mg ha-1) remained an outlier regardless of which level of generalisation was used in the 

allometric models applied to individuals in this stand. These results indicate that a good 

individual-level model does not necessarily translate into much improved stand-level 

predictions. Hence, when allometry-predicted AGBStand estimates are required for new stands, 

added field-measurement costs and model uncertainty associated with obtaining species-

specific data and calibrating model coefficients for each new species-specific model are 

generally unwarranted. Costs and possible uncertainties in stand-based estimates can be 

minimised through the application of more generalised models that are based on a much 

smaller number of parameters (e.g. only two when applying the most generalised model), 

irrespective of the number of species within the stand.  

 

This study has advanced the development and testing of generalised allometric 

models for prediction of total AGBIndiv for a wide range of plant functional types found across 

a diversity of ecoregions in Australia. Simple power-law generic models were precise, even 

when based on trunk diameter as the sole predictive varaible. Given the insubstantial 

influence of site factors (e.g. whether the stand was relatively young or managed, ecoregion, 

MAP and MAT) on AGBIndiv allometry, a next line of enquiry is to rigorously evaluate this 

finding by extending the replication of individuals from some of the relatively under-sampled 

combinations of plant functional type and ecoregion (e.g. individuals of FOther-H from tropical 

and subtropical regions, Fig. 2) or stand-types (e.g. individuals of FMulti from relatively 

mature and unmanaged stands).  
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Although species-specific models significantly reduced bias in AGBIndiv in about 8% 

of the species tested, results obtained from validation of allometric models against 17 stands 

that had AGBStand directly measured showed that a good individual-level model does not 

necessarily translate into much improved stand-level predictions. Across these contrasting 

sites where direct measurement (destructive stand harvest), the application of more 

generalised allometric models resulted in predictions of stand-level AGB that were almost as 

accurate as species-specific models. Furthermore, it is possible that for stands of mixed 

species, due to the smaller sample size and larger overall number of model coefficients to 

parameterise, uncertainties associated with the propagation of errors (including measurement, 

model-fitting and prediction errors) may be larger with the application of multiple species-

specific models compared to a single generalised multi-species model. This hypothesis is 

being tested in a forthcoming paper. Additionally, sample sizes of > 50 are required for 

constructing each species-specific model (Roxburgh et al., 2015), resulting in significant 

costs associated with development of models for each new species. For such mixed species 

stands, likely higher uncertainties and costs negate the slight gain in average accuracy of 

AGBStand prediction when applying multiple species-specific models when compared to a 

generalised multi-species model.  

 

It is therefore recommended that generalised multi-species models be applied when 

cost-effective predictions of AGBStand are required across multiple mixed species stands. The 

most generalised model (AllUniversal) tested here was based on D10 by necessity, and yet D 

measurement at this height is known to be sub-optimal for many single-stemmed tree species. 

Hence for practical reasons, models generalised at the level of plant functional groups (Eq. 

4a-e, reported here using the Baskerville CF) are recommended for application in both 

Australia, and for validation in similar ecoregions in other continents.  
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AGBIndiv (kg) of FShrub = exp [-3.007 + 2.428 ln(D10)] × 1.128, (4a) 
AGBIndiv (kg) of FMulti = exp [-2.757 + 2.474 ln(D10)] × 1.079, (4b) 
AGBIndiv (kg) of FEuc = exp [-2.016 + 2.375 ln(D130)] × 1.067,  (4c) 
AGBIndiv (kg) of FOther-H = exp [-1.693 + 2.220 ln(D130)] × 1.044,  (4d) 
AGBIndiv (kg) of FOther-L = exp [-2.573 + 2.460 ln(D130)] × 1.018,  (4e) 

There are two exceptions to the recommendation of application of Eq. 4. First, where 

the trade-off between accuracy and cost effectiveness is relatively high, such as when 

estimating AGBStand for a given high carbon stand comprising only one or two dominant 

species. In such circumstances, additional costs associated with obtaining species-specific 

models may warrant the improved accuracy of AGBStand prediction. Second, where AGBStand 

is required for stands dominated by species suspected of not conforming to the generalised 

plant functional groups models. Another line of enquiry to pursue is to build improved 

species-specific models to expand the testing done here that found 8% of species did not 

conform to generalised plant functional type models.  

As with all allometric models, to avoid bias in AGBIndiv predictions, recommended 

models in this study should only be applied within their valid diameter range as indicated by 

the maximum D sampled (e.g. Table 3, Table S3). Further sampling is required to extend the 

D range of allometric models to both increase the replication (and confidence) of prediction 

of larger sized trees (D130 >50 cm), and to account for some of the variation in AGBIndiv due 

to hollows or piping of larger over-mature trees or trees affected by termites (e.g. Rayner et 

al., 2014; Monda et al., 2015). 
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List of Figures 

 

Fig 1 Location of trees or shrubs sampled for live aboveground biomass by terrestrial 

ecoregion across Australia (DSWPC, 2015).  

 

Fig 2 Number of individuals (N) of each of the five plant functional types by ecoregion (Fig. 

1).  

 

Fig 3 Generic allometric equations for prediction of total above-ground biomass 

(ln(AGBIndiv)) from stem diameter (ln(D), at 10 cm, D10, or at 130 cm, D130) of: (a) all 

individuals AllUniversal; (b) shrubs and small trees (FShrub); (c) multi-stemmed trees (FMulti); (d) 

single-stemmed eucalypt trees (FEuc); (e) single-stemmed other hardwood trees (FOther-H); and 

(f) softwood trees (FOther-L). Black solid lines represent the model of best fit, and dotted lines 

the 95% prediction interval. Different symbols for the scatter points represent the different 

categories of plant functional types (in (a)) or sub-categories of plant functional types (b-g) as 

defined in Fig. S1. Grey dashed lines in plots b-g represent predictions obtained using the 

AllUniversal model based on D10. Datasets with D130<10 cm were not used in the FOther-L model. 

 

Fig 4 Generic allometric equations for prediction of total above-ground biomass (AGBIndiv) 

from stem diameter (D at 10 cm, D10, or at 130 cm, D130) of: (a) all individuals AllUniversal; (b) 
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shrubs and small trees (FShrub); (c) multi-stemmed trees (FMulti); (d) single-stemmed eucalypt 

trees (FEuc); (e) single-stemmed other hardwood trees (FOther-H); and (f) softwood trees (FOther-

L). Back-transformed predictions were derived by applying the MM correction factor (CF), 

with superscripts a, b, c, d, e and f indicating CF ranges of 1.1042-1.1046, 1.268-1.1279, 

1.0775-1.078, 1.0664-1.0668, 1.0407-1.0433, 1.0366-1.0378, respectively. Black solid lines 

represent the model of best fit, dotted lines represent the 95% confidence interval of fitting 

the model, and dashed lines represent the 95% confidence interval of prediction when 

applying the model. Different symbols for the scatter points represent the different categories 

of plant functional types (in (a)) or sub-categories of plant functional types (b-f) as defined in 

Fig. S1. Datasets with D130<10 cm were not used in the FOther-L model. R2 and RMSE refer to 

the linear regression of predicted vs. observed AGB.  

 

Fig 5 Box plots describing the Proportion of the 95% confidence interval (CI) of generalised 

allometry prediction overlapped by the 95% CI of species-specific allometry prediction when 

the level of generalisation was; (a) plant functional type, or (b) universal, AllUniversal. These 

results are for prediction of ln(AGBIndiv) using models (Eq. 2) across 53 species and a total of 

92 scenarios where D10 was assumed to be 10 cm (N = 53), 50 cm (N = 28), or 100 cm (N = 

11). Note, species presented here are those reported in Table S3, each of which had an N > 

50. Only species sampled to these larger sizes were represented in scenario of D10 of 50 and 

100 cm. 

 

Fig 6 Relationship between total above-ground biomass (AGBStand) from whole-plot 

harvesting at 17 contrasting stands (Table 2) and that predicted for those stands through the 

application of three scenarios of increasing generalisation of allometric models applied: (a) 

information on species identity of each individual at each of the test sites was utilised, and for 
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species that were represented by the 53 available species-specific models, these were applied 

(Eq. 2 using parameters given in Table S3), while for all other species, the appropriate plant 

functional type model was applied (Eq. 2 using parameters given for FShrub, FMulti, FEuc, FOther-

H and FOther-L in Table 3), (b) species identification and/or species-specific models were 

assumed to be unavailable, and so plant functional type models were applied (Eq. 2 using 

parameters given for FShrub, FMulti, FEuc, FOther-H and FOther-L in Table 3), and (c) species 

identification, species-specific models and plant functional type models were assumed to be 

unavailable, and so the universal model (AllUniversal) was applied (Eq. 2 using parameters 

given for AllUniversal in Table 3). In all scenarios, the MM correction factor was applied when 

back-transforming predictions. Grey dashed line represents the 1:1 line. EF indicates model 

efficiency. Black solid line represents the line of best fit, with slope, intercept and fit statistics 

as shown. Values in parentheses are the 95% prediction interval of the slope and intercept. 
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