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Abstract.  Forest dynamic models predict the current and future states of ecosystems and
are a nexus between physiological processes and empirical data, forest plot inventories and
remote-sensing information. The problem of biodiversity representation in these models has
long been an impediment to a detailed understanding of ecosystem processes. This challenge is
amplified in species-rich and high-carbon tropical forests. Here we describe an individual-
based and spatially explicit forest growth simulator, TROLL, that integrates recent advances in
plant physiology. Processes (carbon assimilation, allocation, reproduction, and mortality) are
linked to species-specific functional traits, and the model was parameterized for an Amazonian
tropical rainforest. We simulated a forest regeneration experiment from bare soil, and we vali-
dated it against observations at our sites. Simulated forest regeneration compared well with
observations for stem densities, gross primary productivity, aboveground biomass, and floristic
composition. After 500 years of regrowth, the simulated forest displayed structural character-
istics similar to observations (e.g., leaf area index and trunk diameter distribution). We then
assessed the model’s sensitivity to a number of key model parameters: light extinction coeffi-
cient and carbon quantum yield, and to a lesser extent mortality rate, and carbon allocation,
all influenced ecosystem features. To illustrate the potential of the approach, we tested whether
variation in species richness and composition influenced ecosystem properties. Overall, species
richness had a positive effect on ecosystem processes, but this effect was controlled by the
identity of species rather by richness per se. Also, functional trait community means had a
stronger effect than functional diversity on ecosystem processes. TROLL should be applicable
to many tropical forests sites, and data requirement is tailored to ongoing trait collection
efforts. Such a model should foster the dialogue between ecology and the vegetation modeling
community, help improve the predictive power of models, and eventually better inform policy
choices.
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tropical forest.

INTRODUCTION

Much of the uncertainty in the current and future status
of the carbon cycle is associated to the dynamics of terres-
trial vegetation and its response to climate (Fisher et al.
2014). Tropical forests play a fundamental role in regional
and global biogeochemical cycles (Malhi et al. 2008,
Saatchi et al. 2011, Harper et al. 2013), they host over half
of the Earth’s biodiversity (Scheffers et al. 2012), and they
are increasingly altered by deforestation and degradation
(Laurance et al. 2014, Lewis et al. 2015). For these rea-
sons, tropical forests exemplify several of the major chal-
lenges in global environmental governance.

Terrestrial biosphere models play a foremost role in
understanding how current forcings will alter vegetation
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dynamics and biogeochemical cycles (Friedlingstein
et al. 2013), and in conveying evidence-based knowledge
to policy makers. However, the development of these
models is still facing major challenges in tropical forests
and elsewhere, in part related to our still-limited under-
standing of plant physiological and ecological processes
(Rogers et al. 2017), but also to the way dynamic vegeta-
tion models (DVMs) have been implemented (Prentice
et al. 2007). DVMs describe vegetation dynamics at a
coarse spatial grain (of typically 1° x 1° resolution) and
they still often use a big-leaf approach to describe the
balance in carbon, water, and energy.

Also DVMs aggregate terrestrial plant diversity into
less than a dozen plant functional types (PFTs), broadly
defined by their geographical affinity, deciduousness, and
physiology (Sitch et al. 2003, Clark et al. 2011). However,
leaf and stem functional traits that govern plant physiol-
ogy display a wide spectrum of variation within PFTs,
and particularly so in tropical ecosystems (Fyllas et al.
2009, Baraloto et al. 2010, Diaz et al. 2016). By ignoring
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species diversity, vegetation models may fail to describe
features of vegetation structure or dynamics, such as pro-
ductivity (Morin et al. 2011, Grace et al. 2016), biomass
(Poorter et al. 2015), or stability (Loreau and de Mazan-
court 2013, Morin et al. 2014). Including functional
diversity in DVMs should help increase their predictive
power (Moorcroft 2006, Purves and Pacala 2008). New-
generation models could even jointly model elemental
cycles and the dynamics of biodiversity (Harfoot et al.
2014, Van Bodegom et al. 2014, Mokany et al. 2016).
Here, we aim to bring a novel contribution to this
research challenge, by implementing a scalable and physi-
ology-based individual-based forest simulator (Shugart
1984, Bugmann 2001) that jointly simulates physiological
processes and tree diversity.

Because they integrate finer-grained details of forest
spatial heterogeneity and diversity than DVMs, individ-
ual-based forest models are useful for assimilating eco-
logical data (Pacala et al. 1996), and remote-sensing
data (Shugart et al. 2015). They can also be used to
upscale ecosystem processes at regional scale (Moorcroft
et al. 2001, Sato et al. 2007, Strigul et al. 2008). How-
ever, individual-based forest simulators have seldom
been designed to explore vegetation responses to multi-
ple interacting climate drivers, since tree growth is often
modeled using empirical equations, rather than explicit
processes of carbon assimilation and allocation (Le
Roux et al. 2001, Pretzsch et al. 2015). Also, it has been
argued that individual-based forest models require too
much computer power to be used at large scales (Strigul
et al. 2008). With advances in plant physiology and in
computer power, both limitations can now be critically
reappraised (Shugart et al. 2015).

A number of steps have been taken to bridge the gap
between DVMs and finer-grained models so as to
account for demographic stochasticity (Strigul et al.
2008), but also to more efficiently assimilate information
from large plant trait databases (Kattge et al. 2011). In
some new-generation vegetation models, PFTs have been
replaced by a trait continuum approach to model
cohorts of individuals (Scheiter et al. 2013, Verheijen
et al. 2013, Fyllas et al. 2014), or individual trait combi-
nations have been constrained by documented plant eco-
nomics spectra (Pavlick et al. 2013, Sakschewski et al.
2015). These modeling approaches represent promising
steps toward the building of new-generation DVMs (van
Bodegom et al. 2012, 2014). However, these models take
a “taxonomy-free” approach in the description of biolog-
ical diversity, ignoring species-level differences and
focusing on the continuum of traits. While this is an
interesting simplification, it is unclear how ecological
processes, such as competition, facilitation, or multi-
trophic interactions, can be included in this approach.

To illustrate this point, it has been abundantly docu-
mented that natural plant enemies, such as herbivores or
pathogens, tend to negatively impact abundant species
more than rare species, hence promoting the high biodi-
versity of tropical forests (Janzen 1970, Connell 1971,
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Harms et al. 2000, Wright 2002, Bagchi et al. 2014,
Comita et al. 2014). This negative density dependence is
thought to have direct implications for biodiversity
maintenance and also potentially for the carbon cycle, as
has been demonstrated for North American forests
(Hicke et al. 2012), and for other ecosystem services
(Boyd et al. 2013). Few individual-based forest models
have considered this ecological process (but see Lischke
and Loffler 2006). Another connection between biodi-
versity and ecosystem functioning is the hypothesis that
species-rich forests have higher biomass, higher produc-
tivity, and more resilience to disturbances than those
with a few species as shown experimentally (Hooper
et al. 2005, Scherer-Lorenzen et al. 2007), and in natural
vegetation (Vila et al. 2007, Tobner et al. 2013, Toigo
et al. 2015), although rarely in tropical forests (but see
Sapijanskas et al. 2014, Poorter et al. 2015, Chiang
et al. 2016). A mechanistic understanding of these eco-
logical processes and their ecosystem-wide implications
is difficult, and trait-based DVMs are not ideally suited
to capture such ecological processes. Individual-based
vegetation models are a logical option to test these
hypotheses (Morin et al. 2011, Forrester 2014).

In this contribution, we integrate physiological pro-
cesses underlying plant responses to the environment into
the forest growth simulator TROLL (Chave 1999), an
individual-based and spatially explicit forest model oper-
ating at an even finer-grained representation of space and
forest structure than gap models usually do. Ecological
complexity is much simpler to address at the spatial scale
of TROLL than in coarse-grained vegetation models.
Also, TROLL is uniquely suited to data—model compar-
isons, since its inputs and outputs closely match the scale
and resolution of field measurements, from organism
scale to community scale (Clark et al. 2017). We provide
a field parameterization that depends of species identity
for a tropical rainforest. This version of the TROLL
model simultaneously simulates ecosystem processes and
vegetation diversity, paving the way to new practical and
theoretical applications. We here (1) describe the model
structure and its parameterization; (2) we simulate the
regeneration of a tropical rainforest from bare soil, and
validate it against a range of observations at our sites; (3)
we assess model sensitivity to a number of key global
parameters, and to the inclusion of negative density-
dependence processes; (4) finally, we conduct a virtual
biodiversity experiment by testing the influence of species
composition on ecosystem properties. These results shed
light on the potential contribution of a model such as
TROLL to the challenge of improving predictive next-
generation terrestrial biosphere models.

MoDEL DESCRIPTION

Overview

TROLL belongs to the family of individual-based and
spatially explicit forest growth simulators, along with
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SORTIE (Pacala et al. 1996, Uriarte et al. 2009) and
FORMIND (Kohler and Huth 1998, Fischer et al.
2016). The model was named after German plant mor-
phologist Wilhelm Troll (1897-1978) and his brother,
tropical ecologist Carl Troll (1899-1975). TROLL simu-
lates the life cycle of individual trees (recruitment, growth,
seed production, and death) >1 cm diameter. Trees grow
in a forest light environment that is computed explicitly
within a voxel space of 1 m®. Each tree is defined by its
age, and a set of biometric state variables (dbh, height,
crown radius and crown depth, leaf area; Fig. 1). As in
most forest simulators, tree geometry is set by allometric
equations, but leaf area varies dynamically within each
crown, as a balance between allocation and losses (leaf
fall). At most, one tree can establish in each 1 x 1 m
pixel. In contrast with previous forest simulators, tree
growth is simulated from an explicit carbon balance cal-
culation (photosynthetic assimilation plus allocation),
with assimilation computed over half-hourly periods of a
representative day. This, in turn influences the environ-
ment at the next timestep, which is here set to one month.
Seedlings below the 1-cm size class are not modeled
explicitly, but are part of a seed/seedling pool. In this ver-
sion of TROLL, belowground processes are not explicitly
represented, and herbaceous plants, epiphytes, and lianas
are not included.

A species label is attached to each tree and is inherited
from the mother tree through the seed. With this species
label are associated seven species-specific parameters,
namely leaf mass per area, leaf nitrogen and phosphorus
content, wood specific gravity, threshold dbh beyond
which growth efficiency declines, asymptotic height, and
a parameter of the dbh-height allometry (Table 1).
These traits can be directly obtained from field measure-
ments (see Perspectives in forest biodiversity modeling).

Incident light
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Fic. 1. Representation of individual trees in a spatially
explicit grid in TROLL. Each tree is composed of a trunk and a
crown, with cylinder shapes. The crown and trunk dimensions
(crown radius, CR; crown depth, CD; height, /; diameter at
breast height, dbh) are updated at each timestep, depending on
the assimilated carbon that is allocated to growth, and following
allometric relationships. Each tree has a species label with spe-
cies-specific parameters (see Table 1). Light diffusion is com-
puted explicitly at each timestep and within each voxel from the
canopy top to the ground.
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TaBLE 1. Species-specific parameters provided in input of the
TROLL model.

Abbreviation Description Units
LMA leaf mass per area g/m?
N leaf nitrogen content per dry mass mg/g
P leaf phosphorous content per dry mass mg/g
wsg wood specific gravity g/em?®
dbhyresh diameter at breast height threshold m
Niim asymptotic height m

a, parameter of the tree-height-dbh m

allometry

Note: All data are from the BRIDGE (Baraloto et al. 2010)
and TRY (Kattge et al. 2011) data sets, except some species values
of LMA, N, and P (I. Maréchaux and J. Chave, unpublished data).

The source code is written in C++ and is available online
(version 2.3.2).* Visualization, statistical analysis, and
data processing were performed in R version 3.0.2
(R Core Team 2013). In the following subsections, we
detail the model representation of processes and discuss
the assumptions. Model parameterization, validation data
and simulation set-ups are presented in the next section.

Modeling the abiotic environment

Within-canopy heterogeneity is explicitly modeled.
The physical space in which trees grow is described as a
three-dimensional grid discretized into voxels 1 x 1 x
1 m (ie, 1 m® Fig. 1). The maximal tree size (up to
60-80 m), serves as an upper threshold for the upward
extension of the voxel space.

For each tree crown, leaf area density is deduced from
tree geometry assuming that a tree distributes its leaf area
uniformly across the voxels occupied by its crown (voxel-
mean leaf density LD, in m*m?). Cumulating over all the
trees, leaf area density (leaf area per voxel; in m*m?) is
computed within each voxel v and is denoted LAD(v).
The vertical sum of LAD, upward from each voxel, defines

LAI(v) = iLAD(v/). (1)

V=y

LAI(v) for ground-layer voxels v, commonly called
LAI (leaf area index), is the cumulative leaf area density
down to the ground level (leaf area per ground area, in
m?/m?), and is a common metric in forestry. LAI typi-
cally ranges between 5 and 7 in closed tropical canopy-
forests (Clark et al. 2008), and nowadays, terrestrial
lidar scanning technology allows a direct measurement
of LAD(v) in forests (Calders et al. 2015).

To compute carbon assimilation, we compute the daily
course of variation in light intensity (photosynthetic
photon flux density, PPFD, in pmol photons-m 2s"),
temperature (7, in degrees Celsius), and vapor pressure
deficit (VPD, in kPa) within each voxel of the canopy and

“ https://github.com/TROLL-code/TROLL
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for one representative day per month (Appendix S1). To
this end, we model the within-canopy variation in PPFD
as a local Beer-Lambert extinction law

PPFDmaxamonth ( V) - PPFDlop,max,momh

x exp[—k x LAI(v)] @
where the monthly average of the daily maximum inci-
dent PPFD at top canopy (PPFDipmaxmonth) 1S pre-
scribed from measurements. We assume a uniform and
constant extinction rate k (values for each parameter are
reported in Table 2), even though it is expected to vary
with zenith angle and species leaf inclination angle (Meir
et al. 2000, Kitajima et al. 2005). Given the importance
of light limitation in the understory of tropical forests,
we expect the model to be sensitive to the choice of k. In
this version of the model, we considered only vertical
light diffusion, ignoring more complex light models
within vegetation canopies (Canham et al. 1994, Brun-
ner 1998) or full radiative transfer models (Gastellu-
Etchegorry et al. 1996, Lewis 1999, Mercado et al.
2009a, Widlowski et al. 2013). PPFD, temperature, and
VPD decrease with forest canopy depth (v) and we
describe their intra-day variation at half-hourly time
steps ¢ for a representative day every month, thus the
microenvironment is described by PPFDyonth (v, 1),
Tmonth (v, £) and VPDyonen (v, 1) (Appendix S1).

In the future, coupling TROLL with an energy transfer
model could simplify this representation of the microenvi-
ronment. Alternatively, the model could input empirically
measured half-hourly data sets of PPFD, 7, and VPD. In
its current version, TROLL does not explicitly calculate
the water balance in the soil and the soil-plant-atmo-
sphere water column (Williams et al. 1996, Granier et al.
1999, Laio et al. 2001). It also ignores the dynamics of
nutrients in the soil (Goll et al. 2012), and assumes fixed
species-specific leaf nutrient concentrations. These addi-
tions are postponed to subsequent contributions.

Photosynthetic carbon uptake by plants: leaf-level theory

The first version of TROLL assumed an empirical
form of the growth of tree trunk diameters, as in most
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forest gap models (Chave 1999). Here, we include a
description of the carbon uptake for each plant,
with the Farquhar, von Caemmerer, and Berry model
of C; photosynthesis (Farquhar et al. 1980). Gross
carbon assimilation rate (4, pmol CO,m™2s7') is
limited by either Rubisco activity (A4,), or RuBP
regeneration (4,)

A =min{4,, 4;}

A — Xﬂ
Ve e K 3)
J T
T 44217

where Vimax is the maximum rate of carboxylation
(umolCO,-m~2s~h), ¢; the CO, partial pressure at car-
boxylation sites, I'* the CO, compensation point in the
absence of dark respiration, K., the apparent kinetic
constant of the Rubisco (von Caemmerer 2000), and J
the electron transport rate (umol electrons-m™2s™"),
which depends on PPFD through

1
J = — |0 x PPFD + Jyax—

20 —40 x o x PPFD X Jmax |

(4)

¢ (a0 X PPED + Jinay )

Jmax 1 the maximal electron transport capacity (pumol
electrons~m’2~s’l), 0 the curvature factor, and o the
apparent quantum yield to electron transport (mol elec-
trons/mol photons). In the following, we use ¢, the
apparent quantum yield for C fixation (mol C/mol pho-
tons), which is the initial slope of the photosynthetic
assimilation plotted against incident irradiance. Note
that four electrons are needed to regenerate RuBP, so
o = 4¢. In this photosynthesis model, ¢, Venay, and
Jmax are empirical parameters that represent a large
source of uncertainty in vegetation models (Zachle et al.
2005, Mercado et al. 2009h, Rogers et al. 2017).

Carbon assimilation by photosynthesis is limited by
the CO, partial pressure at carboxylation sites, which is
controlled by stomatal transport as modeled by the
diffusion equation

TaBLE 2. Global parameters used in TROLL. When specified, values in brackets correspond to the distribution range used for the

sensitivity analysis.

Abbreviation Description Units Values Source

k light extinction coefficient, used in light 0.90 [0.50;0.95] Wirth et al. (2001),
diffusion Beer-Lambert law Cournac et al. (2002)

) apparent quantum yield for C fixation mol C/mol photons  0.075 [0.04;0.09] Domingues et al. (2014)

g1 stomatal conductance parameter kPa'? 3.77[2;5] Lin et al. (2015)

fwood fraction of NPP allocated to wood growth 0.35[0.20;0.45] Aragao et al. (2009),

Malhi et al. (2011)

Jeanopy fraction of NPP allocated to canopy, 0.30[0.20;0.45] Aragao et al. (2009),
including leavest, fruits and twigs Malhi et al. (2011)

m maximal basal mortality rate 0.025[0.005;0.045]

+The fraction of NPP allocated to leaves only is set at 0.68 X fiunopy according to Chave et al. (20085, 2010).
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A =gs(ca — ¢) (5)  Vemax and Jiax by multiplying by LMA. Because N, P,

with g, the stomatal conductance to CO, (mol
COz-m’z-s’l). In most DVMs, leaf stomatal conduc-
tance is modeled empirically as a function of the VPD
(Ball et al. 1987, Leuning 1995). Instead we use the
model developed by Medlyn et al. (2011)

g1 A
\/VPD) Ca ©

where gy and g; are parameters. Medlyn et al. (2011)’s
model results from an optimization argument, according
to which stomata should act to maximize carbon gain
while minimizing water loss (Cowan and Farquhar
1977). Assuming g, ~ 0, an empirically reasonable
assumption, and coupling Egs. 5 and 6, this leads to

gs:g0+(1+

G__ & )
¢ g +VVPD

so the ¢;/c, ratio declines as VPD increases. Focusing on
the light-limited part of the Farquhar model, this shows
that g; o« v/T*, which suggests that g, increases with
temperature. Using a different optimal theory pathway
and focusing on the Rubisco-limited part of the Far-
quhar model, Prentice et al. (2014) derived the same
expression as Eq. 7, but with g; o< v/Kp,, also suggesting
a strong positive dependence of g; on temperature.

Photosynthetic carbon uptake by plants: leaf-level
parameterization

Photosynthetic capacity depends on leaf nutrient con-
tent and other leaf traits (Reich et al. 1997, Wright et al.
2004). In tropical forest environments, Domingues et al.
(2010) suggested that V. and J,.« are colimited by the
leaf concentration of nitrogen (N) and phosphorus (P)

10gl() Vemax-M = mln{

logigmax—M = min{

with Vemax—wm and Joax—wm the photosynthetic capacities
at 25°C of mature leaves on a leaf dry mass basis, in pmol
CO»g~'s7! and pmol electrons-g~'s™!, respectively. N
and P are the leaf nitrogen and phosphorous contents in
mg/g, and LMA is the leaf mass per area in g/cm>.
Vemax—m and J.x—m can be converted into area-based

and LMA vary across species, these photosynthetic
capacity parameters are also species specific (Table 1).
Recent modeling studies have implemented this model for
Amazonian forests (Mercado et al. 2011, Fyllas et al.
2014). To account for variation of Vi .x and Jy. with
temperature, we used the formulas of Bernacchi et al.
(2003) and enzymatic kinetic constant values and their
temperature relationships of von Caemmerer (2000,
Domingues et al. 2010; see Appendix S2). Long-term
acclimation to temperature is not included here as simula-
tions were conducted in a stable climate, and is left for
future developments (Kattge and Knorr 2007, Smith and
Dukes 2013).

The stomatal conductance model (Egs. 5-6) depend
on g, which is expected to vary with whole-plant water-
use efficiency, or marginal carbon cost of water use. The
parameter g, has been found to vary among plant func-
tional types (Lin et al. 2015). Given the lack of direct
measurements of g; at the species level and of a robust
relationship with other functional traits, we here used a
fixed mean value of g, (Table 2). We expect a high sensi-
tivity of the stomatal conductance model to the value of
g1 (Kala et al. 2015, 2016, Knauer et al. 2015).

Combining Egs. 3-9 for each tree crown voxel, leaf
carbon assimilation 4, is finally computed for each tree
and within each crown layer / (in pmol CO,-m~%s™1), as
follows in Eq. 10:

where the microclimatic variables are taken from
Appendix S1 and A; averaged across the n, voxels within
crown layer /, and over the half-hourly intervals of a typ-
ical day (where #\; represents the number of half-hourly
values of daytime).

Autotrophic respiration

Plants metabolize a large fraction of their carbon
uptake for maintenance and growth, and this auto-

—1.56 + 0.43 x log;)N — 0.37 x log;( LMA,; ®)
—0.80 4 0.45 x log;,P — 0.25 x log;)LMA

—1.50 4+ 0.41 x log;)N — 0.45 x log;( LMA; ©)
—0.74 + 0.44 x log;,P — 0.32 x log;,LMA

trophic respiration typically represents 30-65% of the
gross primary productivity (Malhi 2012). It varies
strongly among species, within and across sites (Slot
et al. 2013, Atkin et al. 2015), and with the environment
(Atkin et al. 2005, Wright et al. 2006). However, this
process constitutes a major source of uncertainty in

ny X tm

1 oy
A= xy N4 <PPFDmomh (v, ), VPDmontn (7, 7), Tmontn (v, z))
=1

Vot

(10)
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modeling carbon fluxes (Huntingford et al. 2013, Atkin
et al. 2014). As in most vegetation models, we parti-
tioned autotrophic respiration into maintenance respira-
tion and growth respiration, acknowledging that they
come from the same biochemical pathways (Amthor
1984, Thornley and Cannell 2000).

Maintenance respiration (Rpaintenance) 1S usually
inferred empirically (Meir et al. 2001, Cavaleri et al.
2008, Slot et al. 2013, Weerasinghe et al. 2014) and has
seldom been documented for stem and roots. Atkin
et al. (2015) compiled a database of mature leaf dark
respiration and associated leaf traits for 899 species of
100 sites worldwide, spanning a wide range of biomes,
including tropical forests. We used their “broadleaved
trees” empirical model to compute leaf maintenance res-
piration for each species

Riear—m = 8.5341 — 0.1306 x N — 0.5670 x P
—0.0137 x LMA + 11.1 X Vemax—M
+0.1876 x N x P

(11)

with Ry.r_v the species-specific leaf dark respiration
rate on a dry mass basis and at reference temperature of
25°C, in nmol COz‘g71~sfl. The other terms are as in
Egs. 8-9. Multiplying Rje.s—m by LMA gives a species-
specific area-based Rjear (in pmol C-m~2-s~"). For con-
sistency, we used the same temperature dependencies for
leaf respiration as in Atkin et al. (2015; see also Heskel
et al. 2016). We assumed leaf respiration rate during day
light to be 40% of leaf respiration in the dark at the typi-
cal range of temperatures at our site (Atkin et al. 2000).
Total leaf respiration per timestep is then calculated by
explicitly accounting for the length of daylight.

Stem maintenance respiration (R, in pmol C/s) is
modeled assuming a constant respiration rate per vol-
ume of sapwood (Ryan et al. 1994), so that

Ryem = 39.6 x  x ST x (dbh — ST) x (h — CD) (12)

with dbh, A, CD, ST the tree diameter at breast height,
total tree height, crown depth, and sapwood thickness,
respectively (all in m). We assumed that ST = 0.04 m for
trees with a dbh > 30 cm and that ST increases with dbh
from 0 to 0.04 m for smaller trees in agreement with
empirical studies (Granier et al. 1996, Meir and Grace
2002). Stem respiration response to temperature was
modeled using a Qo value of 2.0 (Ryan et al. 1994, Meir
and Grace 2002). Stahl et al. (2011) reported that Rgem
varies among individual trees, even when controlling for
sapwood volume. However, in the absence of a more pre-
cise understanding of the causes of variation, we used
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Eq. 12. Also, Stahl et al. (2010) and van der Sande et al.
(2015) showed that ST can vary significantly across con-
specific trees and among species, but the model assumed
here is considered a reasonable first step.

Fine root maintenance respiration was assumed to be
half of leaf maintenance respiration (Malhi 2012), and
coarse root and branch maintenance respirations were
assumed to account for one-half of stem respiration
(Meir and Grace 2002, Cavaleri et al. 2006, Asao et al.
2015). Finally, growth respiration (Rgrown) Was assumed
to account for 25% of the carbon uptake by photosyn-
thesis (gross primary productivity) minus the mainte-
nance respiration (Cannell and Thornley 2000). These
assumptions are commonly made in the literature, but in
the future, it would be desirable to provide more precise
models.

Net carbon uptake: whole-tree integration and allocation

At each timestep, individual net primary production
of carbon NPP;,4 (in g C) is obtained by the following
balance equation:

NPPind = GPPind - Rmaintenance - Rgrowlh~ (13)

To calculate NPP;,4, area-based GPP and leaf respira-
tion must be summed over the crown’s total leaf area.
Each tree’s total leaf area (LA) is partitioned into three
pools corresponding to the following leaf age classes:
young, mature, and old leaves, so that LA = LAyqune +
LAmature T LAga (all in m?). Young leaves and old
leaves have lower photosynthetic capacities and activi-
ties than mature leaves (Kitajima et al. 1997, 2002,
Doughty and Goulden 2008, De Weirdt et al. 2012, Wu
et al. 2016). We assumed that young and mature
leaves have assimilation and respiration rates one-half
that of mature leaves (see Eqs. 3 and 11), so that Eq. 14
below

where £ is tree height, CD tree crown depth, and |x] is
the rounding function, A¢ the duration of a timestep (in
yr). The factor 189.3 converts a rate from pmol
CO,m 2s ! to g Cm 2yr ! (with 12 the molar mass
of C, an average number of days per year of 365.25, and
assuming 12 h of assimilation per day throughout the
year). At each timestep, respiration terms are also con-
verted into g C.

Carbon allocation to plant organs is prescribed by
fixed factors derived from empirical studies at our sites
(Chave et al. 2008b) or elsewhere in Amazonia (Aragao
et al. 2009, Malhi et al. 2011, 2015, Table 2). Carbon
allocated to wood is converted into an increment of stem
volume, AV in m?, as follows:

Lh]

>

I=[h-CDJ+1

GPPjpg = 189.3 Az x

[A/] X (05 X LAyoung + LAmature + 0.5 % LAO|d)

(14)
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f\-vood X NPPind

AV =10"°
* 0.5 x wsg

x Senesc(dbh)  (15)

where fwood 1S the fixed fraction of NPP allocated to
aboveground woody growth (i.e., stem and branches),
wsg is the species-specific wood specific gravity (g/cm?;
Table 1), and the factor 0.5 converts dry biomass units
into carbon units (Elias and Potvin 2003, Thomas and
Martin 2012). We assumed that the largest trees cannot
allocate carbon as efficiently into growth, reflecting
empirical evidence of a size-related relative growth
decline in trees (Yoda et al. 1965, Ryan et al. 1997,
Mencuccini et al. 2005, Woodruff and Meinzer 2011,
Stephenson et al. 2014): trees cannot exceed the dbh
given by dbhy., = %dbhthrcsh and they are assumed
to be in the declining phase if dbhgpesn <
dbh < %dbhthresh. Here dbhy,esn is a species-specific
threshold (Table 1). If dbh < dbhy,esn, then
Senesc(dbh) = 1. Else, if dbh> dbhyesn, then
Senesc(dbh) = max (0; 3— ZdSEim).

Next, the fraction of NPP allocated to the tree canopy
is denoted by feanopy (Table 2), further decomposed into
leaf, twig, and fruit production, i.e., feanopy = fleaves T
Jiruit T fiwigs: Carbon allocated to leaf production results
in a new young leaf pool, and leaf area dynamics obey
the following equations:

2 ><fleaves X NPPind _ LAyoung

ALAyoung =
youns LMA Tyoung
LA oun; LA‘m T
ALAmalure = YO aure (16)
Tyoung Tmature
ALAold _ LAmature _ LAold
Tmature Told

where Tyoung, Tmatures aNd Tog are species-specific resi-
dence times in each class (in yr) and LL is the species-
specific leaf lifespan (in yr), so that LL = Tyoung + Tma-
ture + told- In this model, we infer LL from LMA for
each species, using the equation proposed by Reich
et al. (1997), Tyoung Was fixed to 1/12 yr for all species
(one month; Doughty and Goulden 2008, Wu et al.
2016), and Tyature as one-third of the leaf lifespan. The
loss term LA q/To1q corresponds to the rate of leaf lit-
terfall at each timestep. Thus, litterfall results from the
dynamics of leaf biomass and specific leaf lifespans.
This is unlike Wu et al. (2016) where litterfall was pre-
scribed, Forrester and Tang (2016) where litterfall was
a constant fraction of leaf stock, or De Weirdt et al.
(2012) where it was assumed equal to the biomass allo-
cated to leaves (implying a constant total leaf area).
Belowground carbon allocation was not included
explicitly in this version of the model. As the allocation
factors fuood and feanopy drive the pathway from tree
productivity to aboveground biomass (AGB) and struc-
ture, we expect a high sensitivity of the model to these
parameters.
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Tree growth and allometries

Trunk diameter growth in dbh, Adbh, is computed
from AV (Eq. 15), as follows. We assumed that tree
height is inferred from the dbh value using a Michaelis-
Menten equation dbh

(17)

with /Ay, and g, species-specific parameters derived
from local measurements on standing trees (Baraloto
et al. 2010, Table 1). Note that since dbh < %dbhthresh, h
is bounded upward by a value that we call /i, =

him Sgpperisyy- Since V= Cr(%*)%h, then
2
AV = C%nh x dbh x Adbh + Cn(@) Ah
18
_VAdbh 3 dbh (18)
~ dbh dbh + ay,
or, equivalently, A7V = Ad‘gl’]h <3 - ﬁ) Here, C is a form

factor (Chave et al. 2014: Eq. 5 therein). Hence, Adbh
can be deduced from AV directly from Eq. 18 above.

Tree crown dimensions are then updated using allo-
metric equations. We used a single allometric relation-
ship between crown radius and dbh, and between crown
depth and tree height, as follows:

CR = 0.80 + 10.47 x dbh — 3.33 x dbh? (19)

CD = —048+0.26 x h (h>5m);

(20)
CD =0.134+0.17 x h (h<5m).

Eqgs. 19 and 20 are based on 168 measurements car-
ried out in French Guiana (Chave et al. 2005; with
RMSE = 0.67 m, R*=0.74, P <10""° and RMSE =
2.63 m, R =0.38, P < 10" for Egs. 19 and 20, respec-
tively). Since we lacked species-specific information, we
used the same relationships linking crown radius to dbh
and crown depth to tree height across all species. For
Egs. 17, 19, and 20, tree allometry has motivated a great
deal of literature (Feldpausch et al. 2011, Lines et al.
2012, Chave et al. 2014, Jucker et al. 2017), and tree
crown architecture depends on ecological strategies
(Bohlman and O’Brien 2006, Poorter et al. 2006, Iida
et al. 2012). A future version of the model will integrate
species-specific allometries for crown dimensions and
improved allometric relations for total tree height.

Finally, the mean leaf density within the crown
(LD, in m*m?) is computed as

LAyoung + LAmature + LAold

LD =
n x CR? x CD

21

This variable depends on crown volume and total leaf
area, assuming a uniform distribution of leaf area within
the crown.
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Mortality

Mortality processes are complex and still incompletely
represented in current vegetation models, although they
play a key role in forest structure and carbon balance (Del-
bart et al. 2010, Friend et al. 2014, Sevanto et al. 2014,
Johnson et al. 2016). At each timestep, each tree simulated
in TROLL has a probability to die, computed through the
following death rate (in events/yr; Sheil et al. 1995):

d= db + dNDD + dstarv + dtreefall (22)
where d,, is a background death rate, dypp represents
death due to negative density dependence, dy,., represents
death due to carbohydrate shortage (carbon starvation),
and dyeeray represents death due to treefall (including trees
indirectly killed by neighboring fallen trees).

Background mortality d}, varies greatly among species,
and we here assume that it is negatively correlated with
species-specific wood density, as observed pan-tropically
(King et al. 2006, Poorter et al. 2008, Kraft et al. 2010,
Wright et al. 2010). This dependence illustrates a trade-
off between investment into construction costs and risk
of mortality (Chave et al. 2009). More precisely, we here
assumed the following simple relationship:

dy = m x (1— Wsg )
WSElim

where m (in events/yr) is the reference background mor-
tality rate for a species with very low wood density. It
was tuned to fit observations of overall stem mortality
rates. The parameter wsgy;,, is a value large enough so
that d,, always remains positive (here set at 1).

In addition, we simulated mortality caused by all biotic
negative-density-dependent factors (term dnpp). The fit-
ness of abundant species is reduced because they tend to
attract more of their specific predators or pathogens
(Wright 2002, Gonzalez et al. 2010, Zhu et al. 2015). Den-
sity dependence is strongest among conspecific individuals
(Comita et al. 2010, Gonzalez et al. 2010, Paine et al.
2012). Here, we hypothesize that basal area is a good
proxy for modeling negative density dependence and that
this effect is identical across species (Comita and Hubbell
2009). At each site i and species s, we computed the term:

1
- mR2BA E:
J
trees of species s
with d,'}j <R

(23)

NDD;, BA, (24)

where BA,; is the basal area of a conspecific neighboring
tree j, BA is the mean basal area of the stand (m*ha),
and R is the radius of the neighborhood, set to 15 m
(Uriarte et al. 2004, Comita and Hubbell 2009, Zhu et al.
2015). From Eq. 24, we computed dnpp as follows:
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dbh
dnpp = Ay x NDDi,s<1 - 2m> 2

where A, determines the strength of NDD on mortality.
Here, we assume that dypp decreases linearly with the
size of the focal tree (Uriarte et al. 2004, Zhu et al.
2015) and equals 0 when it reaches a size of dbhy, esn/2.

A tree can also die because of carbohydrate shortage
in case of prolonged stress (term d.,,, in Eq. 22). For
each stem, we record the duration during which the tree
is under a negative carbon balance, i.e., the number of
consecutive timesteps with NPP;,q < 0 (Eq. 13). When
the stress duration exceeds leaf lifespan, the tree dies of
carbon starvation.

Finally, tree death may be caused by treefalls (term
direetann 0 Eq. 22). To simulate this process, we first
define a stochastic threshold ©. If tree height exceeds O,
then the tree falls with a probability equal to 1 — @/h
(Chave 1999). The parameter ® is computed for each
tree as follows:

O = lmax X (1 — vt x [C]) (26)
where /1, 1 the species-specific maximal tree height, vt is
a variance term (here set at 0.05), |{| is the absolute value
of a random Gaussian variable with zero mean and unit
standard deviation. The orientation of tree falls is random.
Trees on the trajectory of the falling tree can be damaged,
especially if they are smaller than the fallen tree (van der
Meer and Bongers 1996). To model this effect, an individ-
ual variable /st is defined. If a tree is within the trajectory
of a treefall, its variable /urt is incremented by 4 and 2=CR
respectively, where 1 and CR are the tree height and crown
radius of the fallen tree. If a tree height is lower than its
hurt value, its death probability is set to 1 — %hl’ﬁ The hurt
variable is reset to zero at each timestep.

Seed production, dispersal and recruitment

On each 1 x 1 m ground site, a “seed” bank is
defined, which is fed by (1) the seeds produced and dis-
persed from neighboring mature trees and (2) an exter-
nal seed rain. In this version of the model, we assumed
that a large old-growth forest surrounds the simulated
stand. Given the size of the simulated area, external seed
rain exceeded the local seed rain and there was no
recruitment limitation by the seed bank. The seed bank
was emptied at the end of each timestep. In the simula-
tions, we did not vary the relative contribution of local
seed dispersal vs. seed rain (Price et al. 2001, Lischke
and Loffler 2006). The effect of species-specific dispersal
limitation will be explored in a future contribution.

We assumed trees become fertile above a diameter
threshold that is species-specific (dbhy,aiure; Visser et al.
2016); computed from dbhy,s, as follows:

dbhmature =0.5x dbhthresh (27)
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This relationship is drawn from data of reproductive
status of tree species in the tropical forest of Barro Col-
orado Island, Panama, with maximal diameter spanning
a range of 0.05-2 m (see Visser et al. 2016: Fig. S9;
R?=0.81, n = 60 species). In the following, a seed may
be interpreted as an opportunity of seedling recruitment
rather than as a true seed, since not every single seed
production and dispersion is modeled and the seed-to-
seedling transition is implicit.

At each timestep, each mature tree has a probability
of producing seeds. The number of reproduction oppor-
tunities per timestep and per mature tree is denoted 7. It
is assumed fixed and equal for all species (here set at 10).
This assumption is predicated on the fact that there is a
trade-off between seed number and seed size, itself
related to survival and recruitment probability. Thus the
probability of germination does not depend strongly on
seed size or number of produced seeds and can be
assumed a zero-sum game (Coomes and Grubb 2003,
Moles et al. 2004, Moles and Westoby 2006). Irregular
seed production, such as mast fruiting, is a frequent
reproductive strategy in tropical woody species (Norden
et al. 2007), but this is not considered in this version of
the model. Each of these ng events is scattered away from
the tree at a distance randomly drawn from a Gaussian
distribution.

In addition, we consider 7., events due to seeds immi-
grating from the outside. These are calculated as follows:

Text = Niot ><freg X Nha (28)
where N is the total number of reproduction opportu-
nities per hectare coming from outside (here set at 5 per
m?, to ensure saturation of the seed bank), Jree the spe-
cies frequency in the seed rain (here assumed constant
across species), and nyp, the number of hectares of the
simulated plot. These reproduction opportunities are
uniformly distributed within the plots.

A recruitment event takes place if ground-level light
availability is sufficient, i.e., above a species-specific light
compensation point (LCP, which is set equal to R,/ d).
If several species are competing for recruitment, one of
the species is picked at random as the winner out of the
available species, as in a classic lottery model (Chesson
and Warner 1981). Negative density dependence was
also implemented at seedling recruitment stage. For
seed/seedlings in the bank, and for each empty site 7, we
defined p; , the probability of species s to establish, given
that a seed of this species is present. This probability
decreases with NDD;  as follows:

1

1+ A, x NDD;, 29)

pi,s X

where A, is a parameter that determines the strength of
negative density dependence at the recruitment stage. If
A, = 0 this model is equivalent to the lottery model.
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Each newly recruited tree has initial size variable val-
ues, which we assume to be identical across species
(dbh=00lm, 7=1m, CR=05m, CD=03m,
LD = 0.8 m*m®).

PARAMETERIZATION, VALIDATION DATA, AND TESTS

Study sites and calibration/validation data

The TROLL simulator was parameterized for an
Amazonian forest of French Guiana. Forests of the Gui-
ana Shield cover some 30% of Amazonia (~1.6 million
km?), grow on Precambrian crystalline substrates (Que-
sada et al. 2010), and are known to have a distinct spe-
cies composition (ter Steege et al. 2006), a high biomass,
a low mortality rate (Johnson et al. 2016), and a tall
canopy (Feldpausch et al. 2011) compared with western
Amazonian forests. The study area receives ~3,000 mm/
yr rainfall, with significant seasonal and interannual
variation due to the movement of the Inter-Tropical
Convergence Zone. A long wet season lasts from Decem-
ber to July, often interrupted by a short dry period in
March. The dry season lasts from the end of August to
November with 2-3 months with precipitation
<100 mm/month (Bongers et al. 2001). Air relative
humidity is typically lower and temperature higher dur-
ing the dry season due to low cloud coverage.

All input data were obtained from two research sta-
tions located in primary forest. The Nouragues Ecologi-
cal Research Station is located 120 km south of
Cayenne within an undisturbed forest, ~50 km from
Cacao, the closest village (4°05 N, 52°40’ W; Bongers
et al. 2001). The Paracou Research Station is located
close to the village of Sinnamary and 20 km from the
coast (5°15 N, 52°55" W; Gourlet-Fleury et al. 2004).
Meteorological input data (PPFD, 7, and relative
humidity [RH]) were obtained from half-hourly mea-
surements (SR11, Hukseflux, Delft, Netherlands;
HMPI155A, Vaisala, Vantaa, Finland), logged in an
open area at the Nouragues Ecological Research Sta-
tion, from January to December 2014. In 2014, rainfall
displayed a pattern typical of the long-term trends at this
site. Half-hourly VPD was deduced from relative humid-
ity and temperature using known formulas (Monteith
and Unsworth 2008). In this contribution, the same cli-
mate inputs were used every year throughout the simula-
tions, resulting in a stable and periodic climate.

Species-specific parameters of TROLL were obtained
for 163 species (Table 1). The allometric parameters
were derived from ground data (Réjou-Méchain et al.
2015). Functional traits (LMA, wood density, leaf nutri-
ent concentrations) were obtained from a trait database
gathered in French Guiana (Baraloto et al. 2010). The
species included in this study represent about 70% of the
trees >10 cm dbh recorded in permanent plot censuses.
Palms were excluded from the model simulations. All
other general parameters were either measured at our
sites or drawn from the literature (see Table 2).
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Model outputs were compared against tree density,
basal area, aboveground biomass, tree dbh distribution,
species rank-abundance distribution, and tree trait distri-
butions of mature undisturbed forest plots. Specifically,
we used data from the 25-ha Paracou plot and 22 ha of
plots at the Nouragues Station. In both plots, all trees
>10 cm were located, identified to the species, and mea-
sured at least every five years since the early 1990s (Chave
et al. 2008h, Rutishauser et al. 2010). Empirical gross pri-
mary productivity for mature forest were estimated from
measurements from an eddy-flux tower located in the
Paracou research station (Guyaflux; Bonal et al. 2008,
Malhi 2012). Leaf fall was validated against measure-
ments made from litterfall trap collection at both Paracou
and Nouragues research stations (Chave et al. 2010).

Short-term outputs of the simulations were validated
against tree inventory data of a 25-ha stand that was
clear cut in 1976 and has been left regrowing since then.
The site is located south of the Sinnamary village, about
10 km west of the Paracou station (ARBOCEL plot;
Larpin 1989). At this site, a 6.25-ha plot was set up by
CIRAD in 1989 and it has been reinventoried every two
years since then.

Simulating forest regeneration

We tested the TROLL model’s ability to reproduce
the successional dynamics of a tropical forest, including
changes in its composition and structure. We simulated
regeneration from bare soil within an area of
400 x 400 m, with a constant seed external input and
during 500 yr with monthly timesteps. The parameter
set chosen for this simulation was taken from literature
values (Table 2), and none of the parameters, except for
m, were fine-tuned.

We assumed that after 500 yr of regeneration, a forest
should have reached maturity, in the absence of abiotic
disturbances. Since we were interested in following the
regeneration trajectory, no spin-up was performed. A
typical simulation ran for about 90 min on a portable
computer with a 1.7 GHz Intel processor.

In order to assess the variability of simulated forest
properties due to stochasticity alone, we ran 100 repli-
cates and computed the variance across runs.

Sensitivity analysis

To illustrate model behavior we explored the influence
of parameters on model outputs through a sensitivity
analysis. We focused our attention on key parameters
whose field estimates are difficult to measure, and thus
rare and/or uncertain in the literature (Courbaud et al.
2015). Specifically, we explored the model sensitivity to six
global model parameters (Table 2): light extinction coefti-
cient (k), apparent quantum yield (¢), stomatal conduc-
tance parameter (g;), NPP fraction allocated to wood
growth (fi,004), NPP fraction allocated to canopy (feanopy)s
and maximal mortality rate (7). These parameters control
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the main key processes of forest dynamics in the model
(light diffusion, light use efficiency and carbon assimila-
tion, carbon allocation, mortality), and few direct mea-
surements are available for them, leading to uncertainties
in their values. Here we chose not to explore the effect of
seed dispersal parameters, as this question would deserve
an in-depth exploration (Caughlin et al. 2016, Arroyo-
Rodriguez et al. 2017). Each parameter was drawn from a
uniform distribution, with lower and upper bounds based
on extreme values as reported in the literature (Table 2).

The sensitivity analysis was conducted by replicating
the simulation a thousand times with values of the six
parameters drawn randomly and independently for each
simulation from a prior distribution. We hence followed
an “all-at-time” parameter sampling strategy (Pianosi
et al. 2016), without assuming any relationship among
parameters. Simulations were conducted on a 32-thread
cluster (8-core Intel Xeon E5-2450 at 2.10 GHz).

Model sensitivity was assessed both for early stages of
regeneration dynamics and for the mature forest stage.
To assess early regeneration, we computed the root-
mean-square error (RMSE) of simulated aboveground
biomass (AGB), number of trees >10 cm and >30 cm
dbh against measured values from the regeneration plot
(ARBOCEL plot), for the timesteps corresponding to
census dates (n = 13). For these four outputs, RMSEs
were plotted against each parameter value. For the
mature forest stage, we computed the output averages
over the 20 last timesteps of each simulation, and plotted
these values against parameters values. A model output
was said to be sensitive to a parameter if it shows a sig-
nificant marginal correlation with this focal parameter.
Conversely, an absence of model sensitivity with respect
to one parameter is revealed by an absence of trend, even
though some noise may be detected in the model out-
puts, owing to variation due to other parameters. Trends
were detected graphically using parameter-output scatter
plots (Pianosi et al. 2016). We also investigated the
covariation of these simulated output averages across
the 1,000 simulations, and their dependence on parame-
ters values.

To quantify the sensitivity of the model to negative
density-dependence as implemented in TROLL, we
tested different intensities of negative density-depen-
dence effect on mortality and recruitment (A, A,, respec-
tively). We tested a range of these parameter values, and
fixed their ratio so that they have a similar effect on
recruitment and mortality. In other words, we set the
magnitude of density dependence so that A, = 100q;
Ay =oa, with o> 0. We compared these simulations
against simulations with no effect (o = 0). We also com-
pared simulated communities using the Inverse Simpson
Diversity index (or effective number of species; Jost
2006). We tested the prediction that negative density
dependence increases biodiversity and investigated its
influence on ecosystem processes. For all other simula-
tions made in this study, we assumed no negative density
dependence (o0 = 0).
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Role of biodiversity on ecosystem functioning

We explored the influence of the number and identity
of simulated species on model productivity and above-
ground biomass. To this end, we performed simulations
differing in the original number of species (S = 2, 5, 10,
50, 100 species) and composition. For each diversity level
S, we ran a hundred simulations, by randomly picking a
combination of species each time. We then recorded the
contribution of each species to the total aboveground bio-
mass, AGB,, and to gross primary productivity, GPP,,
where s runs among the simulated species. These values
were averaged over the full last simulated year. We also
conducted simulations with monospecific stands for
each of the 163 species parameterized in the model
and recorded the simulated total aboveground biomass
AGB;,,0n0,s and gross primary productivity GPPy,ono.

We then quantified the net biodiversity effect on AGB
and GPP, denoted AAGB and AGPP, respectively, for
each of the simulations. These net biodiversity effects are
defined as the difference between the simulated values
and expected value under the null hypothesis that there
is no effect of biodiversity, i.e., ecosystem process Y for
the mixed-species forest equals the weighted sum of that
in monocultures (Loreau and Hector 2001)

N N
AY = Z Y, - Z Wy X Ymono,s
S= §S=

where Y is either AGB or GPP, wy is a weight propor-
tional to the regional species abundance (i.e., fi.q see
Eq. 28) such that > w, = 1. For each simulation, we
partitioned the net biodiversity effect into two effects:
AY = CEy + SEy according to Loreau and Hector
(2001). The first term is the complementarity effect
(CEy), which results from interspecific interactions (e.g.,
facilitation or competition) or niche partitioning. The
second term is the selection effect (SEy) and results from
the dominance of selected species with particularly effi-
cient traits either for biomass uptake or for carbon
assimilation. We tested if species richness S had a posi-
tive effect on the net biodiversity effect, and on the com-
plementarity and selection effects separately (one-tailed
t test on AY, CE, and SE). We also explored these effects
using a one-way ANOVA with species richness as a fixed
factor. Post-hoc pairwise comparisons were investigated
using a Tukey HSD test. If needed to meet the assump-
tions of normality, AY, CEy and SEy were square-root
transformed while preserving positive and negative signs
(Loreau and Hector 2001, Morin et al. 2011).
Biodiversity effect on ecosystem functioning may result
from the functional properties of species assemblages,
partly independently to changes in species richness per se.
Given a species richness S, the assemblage can present
different trait statistics, and these in turn may induce
selection or complementarity effects. To further interpret
biodiversity effects, we computed continuous functional
trait community means (FM) and functional trait

(30)
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community diversity indices (FD; Laliberté¢ and Legendre
2010, Morin et al. 2011) for a set of traits for each simula-
tion. We computed both FM and FD trait-by-trait and
regressed ¥, AY, CEy and SEyagainst FM and FD across
simulations. Light availability is the only resource whose
limitation is explicitly modeled in this version of TROLL,
so we expected that the following traits would have a
major effect: traits involved in light interception effi-
ciency, such as leaf mass per area (LMA), shade toler-
ance, such as the light compensation point (LCP), or
light niche partitioning, such as maximal adult plant
height (/1,.x; Westoby 1998, Poorter et al. 2009). As wood
density underlies growth potential per investment (see
Eq. 15) and mortality (see Eq. 23), we also included
wood density as a potential predictor of biodiversity
effects. For each of these four traits and for each simula-
tion, FM and FD were computed as the weighted sum of
species traits and of the species trait distance to the trait
mean, respectively (Laliberté and Legendre 2010). In
both cases, we used species relative abundances as weight-
ing factors (including individuals dbh >10 cm). We also
used relative AGB as species weights in FM and FD, but
the results were similar and were not reported here.

REsuLTs

Simulating forest regeneration

Variability was low across the one hundred simula-
tions (Figs. 2-5). Simulated stem density of trees with a
dbh > 10 cm (N,) displayed a sharp increase early on in
the forest regeneration, followed by a sharp increase in
stem density of trees with a dbh > 30 cm (N3(). Com-
parison with empirical measurements in a successional
plot suggests that the simulation overestimated this
intermediate peak in stem density. After 500 yr of simu-
lation, N was of 480 trees/ha (range [456, 502] trees/ha),
at the lower end of empirical observations (Fig. 2A).
We found a good match between simulated and
observed N3, for mature forests (simulations: 107 [102,
112] trees/ha, Fig. 2B). Simulated aboveground bio-
mass (AGB) increased more slowly than N;y and N3,
and had barely reached stability after 500 yr of regener-
ation (Fig. 2C). The simulated accumulation of AGB
was slightly faster than observations at the beginning of
the regeneration. The long-term simulated AGB was of
327 Mg/ha (range [313, 342] Mg/ha; Fig. 2C). This is
within the range of AGB values reported for mature
tropical forests worldwide (Chave et al. 2008«) but at
the lower end of the range reported for mature forests
in French Guiana ([340, 430] Mg/ha; Chave et al.
2008h, Rutishauser et al. 2010, Réjou-Méchain et al.
2015). Finally, community-wide mean wood density
reached a plateau after 100 yr, slightly below empirical
observations (Fig. 2D).

The 500-yr-old simulated forest presented structural
features similar to empirical observations. Ground-level
LAI reached 5.4 (range [5.3, 5.4]; Fig. 3A), at the lower
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Fic. 2. Simulated forest structure, during a 500-yr-long forest regeneration, starting from bare soil, with a monthly timestep
and a constant external seed rain. Dynamics of (A) stem densities of trees with a dbh > 10 cm (in stems/ha); (B) stem densities of
trees with a dbh > 30 cm (in stems/ha); (C) aboveground biomass (in Mg/ha); and (D) mean wood density of the simulated tree
community (in g/em?). The solid black line corresponds to the median while the shaded gray area represents the range across 100
simulations. Circle symbols correspond to the observed early-regeneration values, square and triangle symbols to the Paracou and
Nouragues mature forest values, respectively.

end of the reported range for tropical forests (Clark et al.  diameter-size distribution was concave on a log-log plot,
2008), and in agreement with values reported for French  and the largest trees reached 150 cm dbh, in agreement
Guiana (Cournac et al. 2002). Leaves were homoge- with observations at our sites (Fig. 3B). The number of
neously distributed from 10 to 30 m (Fig. 3A). The trees with a diameter <50 cm was slightly underestimated
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in the simulations, explaining the overall relatively low
simulated N, at the end of the regeneration.

Gross primary productivity (GPP) stabilized within
ca. 100 yr, at 45.4 Mg C-ha "yr~! (range [44.8, 46.1]
Mg C-ha'yr™1), a value higher than those reported for
Amazonian forests (Fig. 4A). The partitioning of GPP
between autotrophic respiration and net primary pro-
ductivity was in agreement with empirical studies (Bonal
et al. 2008, Aragao et al. 2009, Malhi 2012). Simulated
leaf fall increased sharply in the first 5 yr of the regener-
ation, then stabilized at 4.8 Mg C-ha~'yr~! (range [4.8,
4.9] Mg C-ha~'.yr™!), within the range of leaf fall annual
means observed empirically at our sites (Fig. 4B). The
model however displayed less seasonal variability than
observed empirically (Chave et al. 20085, 2010).

Simulated species relative abundances presented a
clear shift in community composition during the ecologi-
cal succession (Fig. 5SA), as is typically observed during
natural secondary rainforest regeneration (Feldpausch
et al. 2007, Chazdon et al. 2010, Lasky et al. 2014). Pio-
neer species, like Cecropia obtusa Trécul (Urticaceae) or
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Laetia procera (Poepp.) Eichler (Salicaceae), with fast
growth rates, low wood density, and high mortality rates,
dominated the community at the early stage of the
regeneration. Laetia procera, however, maintained a rel-
atively high density at the end of the simulated regenera-
tion (Fig. 5A). Later-stage successional species with
higher wood density, progressively increased in domi-
nance in the community (e.g., Pouteria guianensis Aubl.
or Micropholis cayennensis T.D.Penn., both Sapotaceae).
The species rank-abundance distribution after 500 yr of
regeneration (Fig. 5B) displayed an L-shaped profile
consistent with classic ecological patterns (Rosenzweig
1995). The inverse Simpson diversity index increased at
the beginning of the regeneration and stabilized within
~100 yr (Fig. 5C). In spite of the relative consistency
between observed and simulated functional trajectories
and species rank-abundance distributions, the most
abundant species at the end of the simulated regenera-
tion differed from the observed ones (not shown).

At the end of the regeneration, the distribution of traits
for trees with a dbh > 10 cm matched the observed
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distributions (Fig. 6). Simulated leaf mass per area (LMA)
displayed a weak bimodal distribution, as in the observa-
tions (Fig. 6A, E, I). Simulated leaf N and leaf P were
right skewed, also consistent with observations (Fig. 6B,
C, F, G, J, K). The simulated wood density distribution
was less left skewed than the observed one (Fig. 6D, H,
L), and the simulated community-mean wood density was
thus slightly lower than observed (Fig. 2D).

Sensitivity analysis

To assess the robustness and identify the main drivers
of our results, we performed a sensitivity analysis on five
of the global parameters, k, ¢, fwoods feanopy. and m. These
parameters strongly influenced almost all outputs either
of the mature forest stage (Fig. 7) or of the early regener-
ation phase (Fig. 8). We also tested the model sensitivity
to the parameter g; we found that it did not have a signif-
icant influence on the simulation results within the empir-
ical ranges reported for this parameter (Lin et al. 2015).

A larger ¢ value and a smaller k value resulted in a
larger GPP, AGB, and LAI (Fig. 7), and in an increase

Ecological Monographs
Vol. 87, No. 4

of stem density and AGB at the early stage of regenera-
tion (higher RMSE values, Fig. 8). The ratio k/¢ had
the strongest effect of all tested parameters (Fig. 7). This
ratio k/¢ tightly constrained the whole process of light
diffusion, absorption and conversion into assimilated
carbon.

Allocation parameters also had a notable influence on
the simulated results. A larger fraction of NPP allocated
to wood (fywood) resulted in a higher AGB, increasing the
number of large trees at the expense of smaller ones
(Figs. 7 and 8), while a larger allocation to canopy
(feanopy) resulted in a higher LAI (Fig. 7). The parameter
m, which controls the background stem mortality rates,
had a strong effect on stem density and size. Smaller val-
ues of m resulted in a higher density of large trees and
less smaller trees. As a result, it strongly impacted AGB,
but had a limited impact on GPP (Fig. 7).

GPP and AGB were positively but weakly correlated
across the simulations (Fig. 9). The slope of this rela-
tionship was strongly controlled by m and fyo0d
(Fig. 9B, C), whereas the k/¢ ratio determined the val-
ues of the simulated GPP and AGB along these slopes
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Influence of parameter variation on mature forest characteristics simulated by TROLL, as revealed by a sensitivity anal-

ysis (1,000 independent simulations) varying six parameter values (¢, &, fwood> feanopy 7, and g;) randomly and independently
(Table 2). Each point corresponds to one 500-yr simulation (with monthly timestep), and outputs were averaged over the 20 last
iterations. Outputs are plotted on the y-axis, with stem densities of trees with dbh > 10 cm (N;(); stem densities of trees with
dbh > 30 cm (N3g); gross primary productivity (GPP); aboveground biomass (AGB); and leaf area index (LAI). Parameter values
are plotted on the x-axis, with apparent quantum yield for carbon fixation (¢); light extinction coefficient (k); k/¢ ratio; fraction of
NPP allocated to wood growth (f,o0q); fraction of NPP allocated to canopy (feanopy): maximal basal mortality rate (m); stomatal
conductance parameter (g;). Gray bands indicate ranges of realistic output values, as revealed by empirical studies.
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tion (¢); light extinction coefficient (k); k/¢ ratio; fraction of NPP allocated to wood growth (fyo0q); fraction of NPP allocated to

canopy (feanopy); Maximal basal mortality rate (m); stomatal conductance parameter (g;).

(Fig. 9A). A lower m or a larger fyo0q resulted in a larger
AGB increment for a given increase in productivity
(Fig. 9B, C). GPP and LAI were tightly and linearly cor-
related, both decreasing with k/¢ (Fig. 9E). Shifts in
allocation to canopy explained the most part of the scat-
ter in the linear relationships, a higher f..nopy resulting in
a larger LAI for a given GPP (Fig. 9H). An increase in
N3p led to an increase in AGB until ca. 300 Mg/ha,
above which N3 saturated while AGB kept increasing
(Fig. 91, J). Nyp and N3, were overall negatively related.
A lower m value led to both a higher N3y and a smaller
Nyo (Fig. 9N), whereas a lower k/¢ led to a higher N;q
for a given Npy (Fig. 9M). Across the simulations, the
simulated forest basal area was tightly correlated with
AGB and NPP was also tightly correlated to GPP
(Appendix S3), so they are not reported here.

When we simulated negative density-dependence in the
model we observed an increase of the Inverse Simpson
Diversity index. This increase was of 23-32% for trees
with dbh > 10 cm for an increasing magnitude of density
dependence (o in [0.5, 2]) relative to the control (o = 0,
Fig. 10). The dominant species declined in relative abun-
dance from 3.35% (o =0) to 2.45% (o= 2; Fig. 10).
Negative density dependence did not significantly affect
ecosystem processes, with simulated GPP and AGB with
negative density dependence staying within the range of
outputs obtained without negative density dependence.

Biodiversity and ecosystem function

To illustrate the potential of this model in addressing
ecological hypotheses, we tested the effect of varying bio-
diversity on simulated GPP and AGB by changing the
simulated species richness and composition. The median

GPP slightly increased with species richness, but this
effect progressively leveled off above 10 species, and it
was most variable across simulations for assemblages with
low numbers of species (Fig. 11A). Long-term average
GPP was 7.5-60.5 Mg C-ha~'yr~! in single-species runs,
and 29.8-59.0 Mg C-ha~"-yr~" in two-species runs. Thus,
in some cases, we observed overyielding in comparison to
simulations with 100 species and 163 species (Figs. 4A
and 11A). The net biodiversity effect on GPP (AGPP)
was significantly positive, but species richness explained
only 18% of AGPP (Fig. 11B, Table 3). The selection
effect (SEgpp) was also significantly positive (all
P < 0.001, Fig. 11C). In contrast, the complementarity
effect (CEgpp) was much lower in magnitude, although
significantly positive at high species diversity (S = 50 and
100; Fig. 11D). Thus, AGPP was predominantly driven
by the selection effect SEgpp The linear regression
between AGPP and SEgpp was strong (P < 10715,
R? = 0.99), with the slope not significantly different from
1 and the intercept not significantly different from zero.

The influence of species richness on AGB was less
clear than on GPP, with a strong variability across simu-
lations (Fig. 11E, Table 3). Both net biodiversity effect
on AGB (AAGB) and complementarity effect (CEAgg)
were weakly but significantly positive (Fig. 11F-H), but
the selection effect (SEagp) was not, except for SExgn
with two species (Fig. 11G). However CEsgp clearly
increased with species richness (Fig. 11H).

The GPP of monocultures (GPP,,,,,) Was positively
related with LMA (P < 107'°, R?>=0.60) and LCP
(P < 1075, R? = 0.68), but not to A, and wood den-
sity (both P > 0.2). Similarly, GPP of multispecific simu-
lations was strongly positively correlated with FMpya
and FM|cp, and to a lower extent with FDpya and
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FDy cp (Table 3). The AGB of monocultures (AGB,,0n0)
was explained by all four investigated traits (all
P < 1078, R? ranging from 0.19 to 0.52). In multispecific
simulations, AGB was primarily correlated with FM,,,
(P<107"% R*>=10.39), and with FMpmax (P < 1071,
R?=0.40, Table 3). Trait diversity did not strongly
influence AGB in multispecific simulations (Table 3).
Overall, biodiversity effects on GPP and AGB were
weakly explained by trait means and trait diversity,
except CEagp, that was strongly correlated with FDy, .«
(P < 107%5, R? = 0.34, Table 3).

DiscussioN

We described an individual-based vegetation model
parameterized for a tropical rainforest of Amazonia. We

then simulated the successional dynamics of the forest,
and compared results with empirical data. We also per-
formed a sensitivity analysis on key model parameters to
explore the robustness of our predictions, but also to
explore the drivers of ecosystem processes, structure,
and composition, given environmental conditions.
Finally, we used a unique feature of this model, the abil-
ity to parameterize many species within the same com-
munity, to investigate the effects of both species and
functional diversities on simulated ecosystem processes.
Here, we discuss the implications of our findings.

Successional dynamics

Norden et al. (2015) emphasized the idiosyncratic nat-
ure of forest regeneration in the Neotropics, and predicted
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that stochasticity may be as important as determinism in
forest regeneration. We used TROLL to explore this ques-
tion. The regeneration dynamics as simulated by TROLL
were comparable to empirical observations for stem num-
bers, aboveground biomass, and productivity. In terms of
community diversity, we found that species evenness
increased as succession progressed, as observed empiri-
cally (Letcher and Chazdon 2009, Norden et al. 2009,
Letcher et al. 2012, Lohbeck et al. 2014). The data-model
consistency, and the low variability due to demographic
stochasticity across runs, both suggest that the simulated
forest succession is primarily conditioned by the proximity
to mature forests and the variability of effective dispersal
(Norden et al. 2009). In the future, TROLL could be used
to explore this question, and to quantify the influence of
the spatial structure of the seed rain on the early stages of
the assembly of a regenerating rain forest (Price et al.
2001, Kohler et al. 2003, Lischke et al. 2006). We predict
that the relative role of stochasticity in forest regeneration
will be conditioned by the intensity of the seed rain and its
species composition (Chazdon 2003, Caughlin et al. 2016,
Arroyo-Rodriguez et al. 2017). Also, assigning species-
specific parameters, such as seed size and dispersal dis-
tance, should help better capture the identity of dominant
species, but also better quantify species-specific rates of
plant migration (Lischke and Loffler 2006, Snell et al.
2014, Visser et al. 2016).

The recovery dynamics of AGB was slow (Saldarriaga
et al. 1988), and associated with a shift in composition,
fast-growing and low wood density species being pro-
gressively replaced by slow-growing and higher wood
density species (Rozendaal and Chazdon 2015). The
slower growth and larger size of late-successional species
induced an increase in AGB even after a stabilization of
community-wide mean wood density. This suggests that
even though tropical forests store AGB within the first
decades of regeneration, reaching equilibrium in AGB
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takes typically several centuries. The simulated AGB
recovery at 20 yr was 156 Mg/ha, comparable with a
recent compilation of AGB recovery rates for Neotropi-
cal forests (mean of 122 Mg/ha; Poorter et al. 2016).
AGB recovery quickly slowed down thereafter, with an
additional 49 Mg/ha recovered from 20 and 40 yr. The
plot reached 80% of the maximal AGB stock within
85 yr, and 90% in slightly less than 140 yr. Some 50—
105 yr after the start of recovery, our simulated area still
accumulated between 0.5 and 2 Mg-ha'-yr~! of AGB,
within the range of AGB gains reported over Amazonia
(Brienen et al. 2015). This suggests that disturbances
have a long-term legacy on forest AGB stocks (Chave
et al. 2008a), although the magnitude of this effect is dif-
ficult to quantify. It would be interesting to explore
whether TROLL is able to capture the cross-site variabil-
ity in AGB recovery rates, due to variation in floristic
composition alone.

The recovery dynamics is also quantified by monitor-
ing the number of trees >10 cm dbh. In simulations, tree
abundance showed a slightly too early overshooting up
to 1,200 trees/ha, followed by a leveling slightly below
500 trees/ha, both findings being consistent with field
data (Feldpausch et al. 2007, Chave et al. 20085,
Rutishauser et al. 2010; Fig. 2). For trees >30 cm dbh,
we also observed a slightly too rapid increased of tree
density in simulations compared with empirical data. We
emphasize that reproducing precisely the transient
dynamics of both stem density and AGB during early
ecological succession is a difficult challenge because it is
likely to be affected by a number of factors not modeled
here, such as soil compaction, nutrient availability, pio-
neer species physiology, and microclimatology. Field-
derived data also come with uncertainties, and the first
stage of forest regeneration often displays great variabil-
ity across neighboring plots (Feldpausch et al. 2007).
But even though TROLL is unable to capture the precise
forest regeneration dynamics, our results suggest that
the processes included in the present version of the
model capture much of the temporal pattern.

The shape of the simulated tree dbh size distribution
was similar to that commonly reported for tropical rain-
forests worldwide, almost linear on a log-log plot,
although markedly concave. Using an analytically tract-
able model, Farrior et al. (2016) proposed that this con-
served pattern results from gap disturbances and the
asymmetrical competition for light between canopy trees
in full sunlight and understory trees in the shade
(Espirito-Santo et al. 2014). In Farrior et al. (2016)’s
model, the crown-area—diameter allometric relationship
of understory trees drives the scaling exponent of the
power law. TROLL also includes canopy disturbances
and the strong dependence of tree growth rates on light
availability (Egs. 10 and 15). The slope of the simulated
dbh size distribution deviates slightly from observations
(Fig. 3B). To resolve this mismatch, alternative crown
shape allometry could be explored (Egs. 19-20; Jucker
et al. 2017), or we could seek to improve the model fit
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Influence of species richness on (A) simulated gross primary productivity and (E) aboveground biomass, as well as on

the biodiversity effects on both ecosystem properties (B, AGPP; F, AAGB) and their partitioning between selection effect (C, SEgpp;
G, SEAgg) and complementarity effect (D, CEgpp; H, CEagg). For each level of species richness (N = 2, 5, 10, 100), box plot of val-
ues (mid line, median; box edges, first and third quartiles; whiskers, lowest and highest values within 1.5 interquartile range units
from the box; points, outliers outside of this range) of 100 simulations with randomly drawn species combinations among the 163
simulated species. Note the different y-axis scales. Horizontal black lines on biodiversity effect plots are the reference. Asterisks
indicate mean values significantly higher from zero (one-tailed 7 tests; *P < 0.05, **P < 0.01, ***P < 0.001). In case of an overall
effect of species richness (ANOVA; otherwise, ns), different lowercase letters indicate a significant difference between species rich-

ness levels (post hoc Tukey HSD test, P < 0.05).

by optimizing the light transmission and use efficiency
parameters (k, ¢).

Carbon assimilation and allocation were also modeled
explicitly. Consistent with empirical observations, car-
bon fluxes stabilized within the first decade of simulation
(Fig. 4). Constraining the GPP estimates of models for
tropical forests is a difficult challenge (Beer et al. 2010,
Jung et al. 2011), and the estimates reported here are
within the range of variability reported in recent over-
views (Malhi et al. 2011, 2015). The increase in GPP
early on in the succession was strongly correlated with
that of LAI. This appears intuitive, but unfortunately
in situ measurements of GPP across chronosequences of
regenerating tropical forests are currently missing. Even
if the simulated LAI was consistent with observations,
TROLL did not reproduce the strong seasonal pattern

in leaf fall dynamics, as observed in Amazonia (Chave
et al. 2010, Wu et al. 2016). This partly reflects our lim-
ited knowledge on the mechanisms underpinning sea-
sonal shifts in leaf fall (Fu et al. 2014).

Sensitivity analysis

In order to explore the model behavior and its robust-
ness, we assessed the implications of varying some of the
model parameters across their reported range of vari-
ability. The parameters we selected control the main pro-
cesses of the simulated forest, and are difficult to
measure empirically. We included two parameters of
light diffusion and uptake, k and ¢, two parameters of
carbon allocation, fwood and feanopy and the basal mor-
tality rate, m. These parameters were assumed invariant
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TaBLE 3. Biodiversity and ecosystem functioning.
GPP AGB
Parameter GPP AGPP CEgpp SEGpp AGB AAGB CEaGs SEaGe
Species richness 0.07%*%** 0.18%%** 0.07%*%** 0.16%** ns ns 0.07%#** 0.03*
Functional mean (FM)
LMA 0.53%%* 0.07%%* ns 0.06%** 0.05%** ns ns ns
LCP 0.73%%* 0.06%** ns 0.05%** 0.02%* ns ns ns
hiax 0.01* ns ns ns 0.40%** ns 0.01** ns
wsg ns ns 0.06%** ns 0.39%** 0.10%** ns 0.10%%*
Functional diversity (FD)
LMA 0.09%** 0.05%** 0.01%* 0.05%** 0.01* 0.02%* 0.06%** 0.02%**
LCP 0.16%** 0.07%** 0.027%** 0.05%** 0.01%* ns 0.05%** ns
himax ns 0.01* 0.01%* 0.01* 0.09%** 0.03%** 0.34%%* 0.01*
wsg 0.02%* 0.03%** 0.09%** 0.02%* 0.03%** 0.03%** 0.03%** 0.04%**

Notes: Effect of species richness, community functional trait mean (FM), and diversity (FD) on simulated gross primary produc-
tivity (GPP) and aboveground biomass (AGB), and the biodiversity effects on GPP and AGB (AGPP and AAGB). Results were
obtained from 500 simulations varying in species richness and composition, with randomly drawn combinations of N = 2, 5, 10, 50,
and 100 species from 163. AGPP and AAGB are defined as the difference between the simulated values and expected values under
the null hypothesis that there is no effect of biodiversity. These effects are partitioned into a complementarity effect (CEy; with
Y = AGB or GPP), which results from interspecific interactions or niche partitioning, and a selection effect (SEy), which results
from the dominance of selected species with particularly efficient traits either for biomass uptake or for carbon assimilation. Test of
species richness effect: one-way ANOVA with species richness as a fixed factor. Test of FM and FD effects: linear regression with
FM and FD as independent variables. Four species-specific traits are explored: leaf mass per area, LMA; light compensation point,
LCP; maximal adult plant height, /,.,; and wood specific gravity, wsg. For each trait and each simulation, FM and FD were com-
puted as the weighted sum of species traits and of the species trait distance to the trait mean, respectively. In both cases, we used
species relative abundance as weighting factors (including individuals dbh > 10 cm). Values are R~ of models (z = 500 simulations);

R? above 0.10 are shown in boldface type.
*P < 0.05; **P < 0.01; ***P < 0.001; ns, non-significant.

across species and independent of environmental condi-
tions, because a more detailed parameterization is lack-
ing for them. Even though these parameters are
common in vegetation models, they are usually assumed
rather than parameterized. However, it is known that
the light extinction factor k varies with leaf angle, which
depends on both environment and species (Meir et al.
2000, Kitajima et al. 2005). Likewise, the apparent
quantum yield ¢ is expected to vary with leaf thickness
and leaf light exposure (Long et al. 1993, Poorter et al.
1995). Mortality rate and allocation patterns vary
among species strategies and local environments, result-
ing in different tree architectures and resource acquisi-
tion (lida et al. 2011, 2012). Within the range of
parameter values, our simulations always included
empirically realistic values of summary statistics such as
AGB, LAI, GPP, Ny, and N3 at the end of the simula-
tion (+500 yr; Fig. 7). In our simulations, the model sen-
sitivity to parameters is in agreement with our
assumptions and with comparable existing modeling
studies (Medlyn et al. 2005, Mercado et al. 20095).
Fine-tuning of the parameters to optimize the repre-
sentation of the processes was not a goal in this study.
With highly parameterized models such as ours, it is
important to carefully explore the model behavior before
implementing such optimization procedures, and this is
why we did not attempt to fine-tune the model parame-
ters. Inverse-modelling approaches hold great promise to
calibrate parameters for complex models such as forest

growth simulators (e.g., approximate Bayesian computa-
tion; Hartig et al. 2012, 2014, Lagarrigues et al. 2015,
Courbaud et al. 2015). However, the risk that the model
shows an equally good fit with very different model com-
binations should be considered. This equifinality prob-
lem can only be minimized in practice by improving the
quality of the parameter priors.

The sensitivity analysis showed that modeled GPP and
AGB were not strongly correlated. Lower species stem
mortality rates (m) or increased allocation of productivity
to wood growth (f00q) led to a larger AGB stock for a
given GPP (Fig. 9B, C). Multiple processes shape the
pathway of assimilated carbon by photosynthesis toward
standing living biomass: AGB is tightly related to NPP
multiplied by residence time (defined as the inverse of
death rate; Friend et al. 2014), while NPP is tightly
related to GPP times allocation into tissue (Malhi et al.
2015, Johnson et al. 2016). Our simulation runs confirm
that stem mortality is a strong predictor of AGB stocks
(Johnson et al. 2016), as well as carbon allocation
(Doughty et al. 2014, Malhi et al. 2015). The sensitivity
analysis spanned the observed range of stem mortality
and allocation patterns due to variation in environmental
conditions, soil composition, and floristic composition
across Amazonia (Quesada et al. 2010, 2012). Better
empirical estimates of ecosystem-wide residence times
and allocation would help constrain this type of models
(Litton et al. 2007, Friend et al. 2014, Malhi et al. 2015,
Johnson et al. 2016, Clark et al. 2017).
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The processes of light diffusion, absorption, and the
resulting carbon uptake by photosynthesis, which were
constrained by the k/¢ ratio, controlled GPP and AGB
independently of stem mortality and allocation processes
(Fig. 9A). Variation in light absorption across sites may
explain the observed differences in the effect of stem mor-
tality rate on AGB (Johnson et al. 2016). Also, the major
predictor of GPP variation was LAI, as has been found
in previous global syntheses (Beer et al. 2010, Fig. 9I). A
more efficient light uptake and conversion to carbon
(lower k/d) allowed more dense and packed canopies to
develop, with more large trees and higher LAIL.

Our model of stomatal conductance is based on recent
theoretical advances (Medlyn et al. 2011, Prentice et al.
2014). Considering the importance of stomatal conduc-
tance and internal CO, concentration in driving productiv-
ity, we expected the model to be sensitive to the main
parameter g|. The parameter g; relates the ratio of internal
to ambient CO, concentration (c/c,) to air vapor pressure
deficit (VPD; Eq. 7). However, the model outputs pre-
sented no clear trends with g;, although the range of g; val-
ues spanned the empirical range (Lin et al. 2015, Table 2).
Within this range, and given the VPD and temperature
amplitudes at our site, variation in carbon assimilation due
to changes in g is limited (see Appendix S4 for an illustra-
tion), and a more robust test of this model should be con-
ducted, for instance at a forest-savanna transition
(Domingues et al. 2010). Alternative models of stomatal
conductance with different sensitivities to VPD have been
found to yield similar performance for tropical evergreen
forests (Knauer et al. 2015). We also tested a dependence
of g, as a function of wood density, as suggested in Lin
et al. (2015: Fig. 3). In agreement with our sensitivity anal-
ysis, this change in the model did not improve the fit to
output summary statistics (results not shown).

Negative density dependence and species coexistence

In tropical ecology, it has long been established that
one of the foremost processes driving the abundance of
species, the maintenance of rare species, and indirectly
ecosystem processes, is the so-called Janzen-Connell
hypothesis (Janzen 1970, Connell 1971). Because we
aimed at jointly modeling ecosystem processes and bio-
diversity, our sensitivity analysis also included a test of
the hypothesis that negative density dependence (the
competitive advantage of rare species over abundant
ones) could alter community structure and also regulate
plant productivity (Terborgh et al. 2001, Schmitz 2003).

We found an increase in community diversity (even-
ness) due to negative density dependence, an effect that
increased through life stages. This result is in agreement
with experimental studies and observations that negative
density dependence is key to explain the large species
diversity in the tropics (Wright 2002, Uriarte et al. 2004,
Gonzalez et al. 2010, Bagchi et al. 2014). Modeling
studies have previously suggested that negative density
dependence is needed to reproduce observed biodiversity
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(Lischke and Loffler 2006). In our study, negative den-
sity dependence had a limited influence on community
diversity since diversity was primarily maintained by
immigration, but we would expect a stronger effect in sit-
uations where the external seed rain contributes less, as
would occur in fragmented landscapes (Laurance et al.
1998, Laurance 2008, Ewers et al. 2017). Also, in chang-
ing climates, it is expected that environmental filtering
will be stronger, which would result in drastic changes in
floristic composition. This prediction is already observed
and may be soon amplified (Fauset et al. 2012, Meir
et al. 2015, Feldpausch et al. 2016, van der Sande et al.
2016). For these reasons, adding stabilizing diversity
processes in vegetation models is an important objective.

Biodiversity and ecosystem functioning

By simulating ecosystem processes while keeping track of
species identity of individuals, we could investigate the link
between biodiversity and ecosystem functioning (BEF).
This application illustrates the potential of TROLL to
address practical and theoretical ecological questions (see
also Chave 2001). BEF relationships have been intensely
studied over the last decades, through experiments (Cardi-
nale et al. 2009), observations along natural gradients of
species richness (e.g., Paquette and Messier 2011, Gros-
siord et al. 2014) or theory (e.g., Loreau 1998, 2010).
Experimental studies have often been limited in time and
to low species richness. Studies have predominantly focused
on grasslands and, to a lesser extent, on temperate forests
(but see Potvin and Gotelli 2008, Finegan et al. 2015, Loh-
beck et al. 2015, Poorter et al. 2015, Liang et al. 2016).

By virtually manipulating the number and identity of
species, we assessed the effect of species richness and
functional composition on the simulated gross primary
productivity (GPP) and aboveground biomass (AGB) of
a tropical forest plot. Species richness had a positive
effect on both ecosystem characteristics, even though
this effect leveled off at high species richness for GPP
and was weak for AGB. These results are in line with
previous observations (Grime 1997, Chisholm et al.
2013, Sullivan et al. 2017). As seen above, the contrast-
ing effect of species richness on GPP and AGB illus-
trates the need to explore these ecosystem metrics
separately, and not use one as a surrogate of the other
(Chisholm et al. 2013).

Species richness alone explained a small fraction of the
variability in GPP and AGB across simulations. We were
able to simulate the influence of biodiversity at a relatively
large spatial scale, and the biodiversity effect vanishes
with increasing spatial scale, as found empirically in a
range of tropical forests (Chisholm et al. 2013, Sullivan
et al. 2017). Also, we observed a strong variability for a
given species richness, showing that taxonomic composi-
tion of the tree species assemblage controls ecosystem
properties more than the number of species per se.

In simulations with low species richness, we found
particularly contrasted ecosystem properties. The most
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direct way to assess this finding would be to contrast the
ecosystem properties in old-growth mixed-species forests
with that of monospecific plantations. In French Gui-
ana, an experimental set-up of monospecific plantations
has been established in the early 1980s to test the possi-
bility of production planting for 16 local timber species
(Roy et al. 2005, Bréchet et al. 2009). At this site,
Bréchet et al. (2009) showed that litterfall presented a
four-fold variation across the 16 monospecific planta-
tions, and that basal area showed a 10-fold variation.
Litterfall is a reasonably good proxy for NPP in tropical
forests (Malhi et al. 2011), and basal area is a good
proxy for AGB. This demonstrates that tropical tree spe-
cies, when grown alone, do display the large range of
variation in the ecosystem properties we evidenced in
our simulations (see also Bauters et al. 2015).

In our simulations, the major impact of species diver-
sity on GPP was the selection effect, the influence of a
selective group of efficient species on the ecosystem,
rather than a complementarity effect in resource acquisi-
tion across species niches. This finding contrasts with
some empirical studies where a stronger complementarity
than selection effect was evidenced (Loreau and Hector
2001), but is in agreement with empirical results in tropi-
cal forests (Bauters et al. 2015, Finegan et al. 2015, Chi-
ang et al. 2016, Lohbeck et al. 2016, Prado-Junior et al.
2016). However, our model does not include any other
resource limitation than light, especially nutrient and
water limitations. Thus, our results should be interpreted
as a null scenario against which to test additional pro-
cesses. For instance, it would be interesting to test how
the addition of a nutrient cycle would alter our conclu-
sions, since most tropical forests are phosphorus limited
(Wright et al. 2011, Barantal et al. 2012, Batterman et al.
2013). Belowground element trade among individuals of
different species (Klein et al. 2016) may also induce
higher complementarity effect. Also, asynchronous leaf
phenology may lead to complementarity through tempo-
ral niche partitioning in tropical forests (Reich et al.
1992, Sapijanskas et al. 2014), but TROLL currently does
not include this effect, and the mechanisms triggering leaf
fall are complex and poorly documented.

Consistent with a stronger selection than complemen-
tarity effect, GPP and AGB were better explained by
community-weighted mean functional traits than func-
tional trait diversity (Finegan et al. 2015, Chiang et al.
2016, Prado-Junior et al. 2016). Gross primary produc-
tivity was strongly positively correlated with both leaf
mass per area and light compensation point weighted
means (Table 3). This result indicates that GPP increases
with both leaf lifespan, itself related to LAI, and leaf pro-
ductivity (Reich et al. 1992, Sterck et al. 2006, Falster
et al. 2011, Prado-Junior et al. 2016). Empirical studies
have yielded contrasting results, especially in early-succes-
sional forests, which could be due to the advantage of
low-LMA species early on in the regeneration (Sterck
et al. 2006, Lohbeck et al. 2013, 2014, Finegan et al.
2015). Similarly, AGB was positively correlated with
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community-weighted mean wood density, itself related to
carbon residence time (see Eq. 23), and with community-
weighted mean maximal height, in agreement with recent
studies (Falster et al. 2011, Finegan et al. 2015, Chiang
et al. 2016, Mensah et al. 2016), and with our sensitivity
analyses. Also, the complementarity effect on AGB was
strongly correlated to the dispersion of species maximal
heights, as expected from a better canopy packing and
complementarity of light niches due to heterogeneity in
tree heights (Poorter et al. 2005, Sapijanskas et al. 2014).
This pattern has already been described in the literature
(Morin et al. 2011, Ruiz-Jaen and Potvin 2011).

Functional traits are known to vary across species and
sites (Fyllas et al. 2009, Baraloto et al. 2010, Banin
et al. 2012); our analysis suggests that it would be
important to use site-specific traits to simulate ecosys-
tem functioning (ter Steege et al. 2006, Quesada et al.
2012, Fyllas et al. 2014). This remains a challenge
because spatial variability in trait values is still poorly
represented in vegetation models (de Almeida Castanho
et al. 2016, Johnson et al. 2016).

Perspectives in forest ecosystem modeling

The current version of TROLL offers several novelties
over previous models of the same type. It also opens new
perspectives in modeling, which we hope to address in the
future. TROLL integrates several advances in plant physi-
ology, but it also reflects the limits of this field. For exam-
ple, plant respiration is less well understood than
photosynthesis (Atkin et al. 2014). Allocation and mor-
tality mechanisms are also less well known than assimila-
tion (Malhi et al. 2015). Since it adopts a finer-grained
representation of vegetation structure and diversity than
most DVMs, TROLL is an efficient tool to test alterna-
tive hypotheses on these understudied processes. It could
be used to test processes that may be relevant for future
improvements of DVMs and assess the level of details
required in model representation. It could also be helpful
to propose generic scaling-up relationships (Bellassen
et al. 2010). Ecosystem experiments in tropical forests,
such as the new generation of FACE experiments (Norby
et al. 2016), through-fall exclusion experiments (Meir
et al. 2015), nutrient addition experiments (Powers et al.
2015), and other in situ experimental approaches (Fayle
et al. 2015), all provide opportunities of data-model inter-
actions and hypothesis testing on poorly known processes
(Medlyn et al. 2015, 2016). TROLL should facilitate
data—model comparisons, as its outputs match the scale
and resolution of field measurements.

The current version of TROLL does not explicitly
model the water cycle and plant hydraulics. The two-
month dry season observed in French Guiana rarely
results in major tree physiological stresses (Buchmann
et al. 1997, Bonal et al. 2008), and this explains the rela-
tively good fit of the model with observations. However,
drier tropical areas are more water limited (Restrepo-
Coupe et al. 2013, Guan et al. 2015, Wagner et al.
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2016), and this situation may be more pervasive in the
future as drought could become a prevailing mechanism
of tropical forest vulnerability (Boisier et al. 2015, Meir
et al. 2015). It would thus be important to include the
water cycle to project future ecosystem states. TROLL
has an appropriate model structure to include a species-
level description of drought tolerance, an important
point since there is a strong inter-specific variation of
plant drought tolerance (Engelbrecht and Kursar 2003,
Klein 2014, Maréchaux et al. 2015, Martinez-Vilalta
et al. 2014). Including the water cycle in TROLL could
also improve the successional dynamics since tempera-
ture and VPD are higher in clearings than in dense
canopy of mature tropical forest (Marthews et al. 2008,
Lebrija-Trejos et al. 2011). The strong evaporative
demand in secondary forests would imply reduced car-
bon assimilation, which could in turn explain why our
simulated forest regeneration dynamics was more rapid
than empirical observations.

Carbon allocation was described empirically, assuming
a fixed proportion of total NPP allocated to wood growth
and foliage production, and through the use of fixed and
field-derived allometric equations. This approach is simi-
lar to that developed in other forest growth models (e.g.,
Kohler and Huth 1998, Moorcroft et al. 2001, Fyllas
et al. 2014). However, carbon allocation is a dynamic
process that can vary with resource limitation, such as
water and nutrients, and thus across sites (Litton et al.
2007, Chen et al. 2013, Doughty et al. 2014, Malhi et al.
2015; Appendix S5: Fig. S1). Rowland et al. (2014)
demonstrated that the fitting of seasonal allocation
parameters yields better match with empirical observa-
tions in a tropical forest. Scheiter and Higgins (2009)
implemented an approach to ensure that the allocation to
biomass pools depends on the most limiting resource (see
also Friedlingstein et al. 1999, Guillemot et al. 2017), but
a mechanistic understanding of plant carbon allocation is
still lacking (Farrior et al. 2013, Schippers et al. 2015).
One step forward would be to explicitly represent alloca-
tion of photosynthates to carbon reserves (non-structural
carbohydrates, NSC; Dietze et al. 2014; Appendix S5:
Fig. S1). It would be useful to add a pool of NSC because
mortality due to carbon starvation (see dy.. in Eq. 22)
could then be expressed directly in terms of NSC deple-
tion. Fortunately, the role of such dynamic NSC storage
in plant metabolism maintenance, growth control, and
mortality processes is being increasingly studied (Sala
et al. 2012, Korner 2015, Martinez-Vilalta et al. 2016).

More generally, closing the carbon cycle is an important
challenge. Soil carbon fluxes, root exudates, and hetero-
trophic respiration are currently absent in TROLL, despite
their known importance in the carbon cycle (e.g., Bonal
et al. 2008, Davidson et al. 2011; Appendix S5: Fig. S1).
A proper comparison of the model against eddy-flux data
would also require closing the carbon balance (Baldocchi
et al. 2001, Baldocchi 2003, Bonal et al. 2008). Adding
these features would help explore the role of mycorrhizal
interactions in mediating nutrient uptake in plants, but
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also in better understanding species complementarity on
ecosystem function (Bardgett et al. 2014, Klein et al.
2016). The integration of an explicit nutrient cycle with
colimitation for nitrogen and phosphorous would also be
a very useful advance (Prentice et al. 2007, Fernandez-
Martinez et al. 2014, Powers et al. 2015; Appendix S5:
Fig. S1) given the on-going alteration of nutrient availabil-
ity by humans (Penuelas et al. 2013). Overall, the integra-
tion of the water and nutrient cycles and of explicit tree
NSC storage would help explore the control of nutrient
and water availability on growth, and shift from a source-
driven to a sink-driven carbon modeling approach (Muller
et al. 2011, Fatichi et al. 2014, Korner 2015, Guillemot
et al. 2017; Appendix S5: Fig. S1).

Another important, and missing, process in TROLL is
herbivory. Herbivory makes a major contribution to car-
bon and nutrient cycles, as herbivores consume as much
as ~20% of foliar production (Metcalfe et al. 2014) and
they regulate tropical forest productivity (Terborgh et al.
2001). Pioneer species have been reported to suffer more
from herbivory than late-successional species, with
investment into leaf defense traits increasing with succes-
sion (Coley et al. 1985, Poorter et al. 2004, Lohbeck
et al. 2013). Attempts have already been made to
dynamically and jointly model plant dynamics and that
of their predators (Harfoot et al. 2014); TROLL offers
an opportunity to explicitly model the host-specificity of
predators, and their individualistic response to environ-
mental changes, and to model the joint dynamics of
plants and herbivorous insects (Forister et al. 2015). To
that end, manipulative experiments on whole ecosystems
would prove valuable (Fayle et al. 2015).

Perspectives in forest biodiversity modeling

Tropical forests shelter thousands of co-occurring tree
species (Hubbell et al. 2008) and these span a broad
range of ecological and functional properties. Advances
in plant functional trait research represent a major
advance in understanding plant physiology and ecologi-
cal functions (Kattge et al. 2011, Diaz et al. 2016). One
original feature of TROLL is that it describes species
individually, thus providing a finer description of biodi-
versity than the usual approaches based on a limited
number of plant functional types, or even the descrip-
tions based on a continuous spectrum of traits
(Sakschewski et al. 2015). This level of biodiversity
description was implemented in a parameterization rely-
ing on only seven species-specific functional traits
(Table 1), all of which are relatively easy to measure in
the field. Indeed, allometric parameters can be obtained
from the observation of 10-20 individuals spanning the
size range of the species, and leaf- and stem-level param-
eters can be measured from a limited sampling of tissue
(Patino et al. 2012). Thus, the model requirements of
TROLL closely parallels current efforts of trait data col-
lection, and for this reason it should be applicable at
many tropical forests sites.
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The species-level description in TROLL is similar to
functional type descriptions in many DVMs. The spe-
cies-specific parameters are fixed and prescribed, and
are identical among the individuals of the same species.
Thus, we overlook intraspecific functional variability.
There is abundant evidence of the importance of
intraspecific variation in ecology and evolutionary biol-
ogy (Chesson 2000, Albert et al. 2011, Laughlin et al.
2012, Snell et al. 2014, Le Bec et al. 2015), and this vari-
ation may contribute to buffering the effect of climate
change (e.g., Scheiter et al. 2013). However, ignoring
intraspecific variation is a reasonable simplification. Since
TROLL has an object-oriented code structure, the inte-
gration of intraspecific variability will be easily imple-
mented and is an interesting avenue for future research.
Also, independent of model performance, the ability of
TROLL to parameterize many species in the model repre-
sents a way forward to relate empirical knowledge and
ecological data sets to vegetation models.

One driving motivation behind modeling species one
by one in TROLL is that each species has its peculiar
evolutionary history and ecology, and should therefore
be considered as the most natural unit in the description
of natural communities (Gleason 1926). Recent model-
ing studies have followed a different route to model bio-
diversity. They did not explicitly model species one by
one, but they used empirically documented functional
trade-offs (Wright et al. 2004) to constrain individual
trait associations into a biologically realistic space
(Scheiter et al. 2013, Sakschewski et al. 2015). This
approach is computationally efficient and less data
demanding than ours, but it is predicated on varying
trait combinations within strictly limited constrains, that
may ignore a more complex set of constraints (Laughlin
2014, Li et al. 2015, Asner et al. 2016). TROLL is a use-
ful model to explore the generality of this simplification
and its implications for forest dynamics.

TROLL yields outputs with full taxonomic informa-
tion, similar to field inventories. Correspondence between
field data and model structure is desirable if we wish to
take advantage of empirical knowledge and to validate
models. Thus we could investigate theoretical questions
such as the effect of species richness and composition on
ecosystem properties. This choice also has important
practical implications. Indeed, about one-half of tropical
forests are designated for timber production (Blaser et al.
2011), and it is important to assess and predict the impact
of logging scenarios on carbon losses and biodiversity
and structure modifications. Species-level integration
could inform management approaches, as logging prac-
tice crucially depends on commercial species of particular
interest. In French Guiana, only two species, Dicorynia
guianensis and Qualea rosea, account for up to 60% of
the total timber production. TROLL could thus help
assess forest vulnerability to timber exploitation (e.g.,
Fargeon et al. 2016) by modeling logging scenarios,
selecting focal species at a reference diameter.
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