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Tree size andclimaticwater deficit
control root to shoot ratio in
individual trees globally

Plants acquire carbon from the atmosphere and allocate it among
different organs in response to environmental and developmental
constraints (Hodge, 2004; Poorter et al., 2012). One classic
example of differential allocation is the relative investment into
aboveground vs belowground organs, captured by the root : shoot
ratio (R :S ; Cairns et al., 1997). Optimal partitioning theory
suggests that plants allocate more resources to the organ that
acquires the most limiting resource (Reynolds & Thornley, 1982;
Johnson & Thornley, 1987). Accordingly, plants would allocate
more carbon to roots if the limiting resources are belowground, that
is water and nutrients, and would allocate more carbon above-
ground when the limiting resource is light or CO2. This theory has
been supported by recent research showing that the R :S of an
individual plant is modulated by environmental factors (Poorter
et al., 2012; Fatichi et al., 2014). However, understanding the
mechanisms underpinning plant allocation and its response to
environmental factors is an active field of research (Delpierre et al.,
2016; Paul et al., 2016), and it is likely that plant size and species
composition have an effect onR :S. Accounting for these sources of
variation is an important challenge for modelling (Franklin et al.,
2012).

The hypothesis that aridity controls R :S is supported by
experiments on tree seedlings, which report higher R :S values in
response to simulated drought treatments (Lambers et al., 2008;
Poorter et al., 2012). This hypothesis is also consistent with the
observation that trees in arid environments tend to allocate
proportionallymore biomass to roots, whichmay improve access to
soil water (Nepstad et al., 1994) and act as a protected reservoir of
stored carbohydrates to facilitate rapid regrowth following distur-
bances such as fire that are common in arid regions (Ryan et al.,
2011). However, previous meta-analyses have led to contradictory
results regarding the causes of stand-level variation inR :S.Mokany
et al. (2006) found precipitation was the main control on R :S
values; by contrast, Reich et al. (2014) suggested that temperature
was the main driver, with R :S largely unrelated to aridity. Yet,
previous studies used either data from soil cores (Reich et al., 2014),
or a limited amount of data on root biomass from individually
excavated trees (Cairns et al., 1997;Mokany et al., 2006),making it
impossible to explore individual patterns of R :S variation in
response to tree size and environmental conditions.

Using the largest global dataset of its kind, here we provide the
first analysis of global patterns of variation in individual-tree R :S.
We hypothesized that individual R :S varies with environmental

conditions, namely climate and management type, and is also
determined by intrinsic factors, namely tree size and species. We
also aimed to rank the relative contribution of these factors to R :S
variation.The global dataset of individualR :S values was compiled
fromwhole-tree harvesting studies (Supporting InformationNotes
S1 and Fig. S1), the BAAD among them (Falster et al., 2015)
[correction added after online publication 23 October 2017: the
reference Falster et al. (2015) has been inserted here and in the
References section]. The dataset encompasses 409 sites and a total
of 3416 trees of 212 species with oven dry weight measurements of
both aboveground and belowground biomass, from which we
computed the R :S (Fig. 1). The destructively-sampled trees
included in the database had diameter-at-breast height (DBH)
values ranging from 0.6 to 128 cm (more details in Fig. S1). We
fitted linear regression models, using the natural logarithm of R :S,
loge(R :S ), as the response variable to reduce heteroscedasticity.
The explanatory variables that we analysed were tree size, tree
species, wood specific gravity, phenology (evergreen, deciduous),
and clade (gymnosperm, dicot angiospermormonocot angiosperm,
i.e. palm). Additional factors in the models were bioclimatic region
(tropical dry, tropical wet, non-tropical), temperature, precipita-
tion, whether the tree was growing in a natural forest or plantation,
and climatic water deficit (MWD, for mean water deficit, in
mm yr�1), which is the deficit between monthly rainfall and

Fig. 1 Plot of individual root : shoot (R : S) ratios against tree diameter-at-
breast height (DBH, in centimetres), including treeswithDBHup to 1m, for a
better display. Each grey point corresponds to an individual value. The dark
green line is the mean value of R : S at that particular DBH, and the green
shading illustrates� SE.
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potential evapotranspiration (Arag~ao et al., 2007). Additional
details about the explanatory variables andmethods are inMethods
S1. We carried out a stepwise regression analysis, retaining the
variables significant at 95%, and selected the best model based on
Akaike information criterion (AIC) values. The conditional and
marginal variances, R2

GLMM values, for the final model and
variances for each component were calculated using the method
proposed by Nakagawa & Schielzeth (2013). All statistical analyses
were conducted in R (code reproduced in Notes S2).

The following model, with species as a random effect, explained
62% of the variance of the data (R2GLMM-C values):

logeðR : SÞ
¼ �1:2312� 0:0215 DBH þ 0:0002 DBH2 � 0:0007

�MWD� 0:1631 plantationþ jSpeciesj
whereDBH is in centimetres,MWDis inmillimetres, plantation is
a binary 1/0 dummy variable and Species is a species specific
random term.

Themost important factor explaining global treeR :S values was
tree size: DBH and DBH2 jointly accounted for 33% of the
variance. Mean R :S values decreased with tree size for trees with
DBH up to 1 m. For instance, saplings < 2 cm DBH had a mean
R :S of 0.43, while trees with DBH 25–30 cm had a value of 0.28.
For trees with DBH larger than 1 m, R :S did not vary much (but
the sample size for these was small, only 42 trees). Saplings and
small trees presumably invest more biomass belowground to take
up nutrients and water for fast growth and survival (Poorter et al.,
2012). The decline in R :S with increasing DBH is also consistent

with the fact that as trees age, and DBH increases, nonconductive
xylem accumulates disproportionately in aboveground tree parts.
MWD accounted for 17% of the variance, and R :S declined with
decreasing MWD (Fig. 2). This suggests that plants experiencing
water shortage allocate more biomass belowground, in agreement
with Mokany et al. (2006) and observations from experiments
(Hodge, 2004; Lambers et al., 2008; Poorter et al., 2012), but not
with Reich et al. (2014). When MWDwas included in the model,
both precipitation and temperature became nonsignificant.MWD
also explained more variance than precipitation or temperature
when these variables were fitted separately in single-factor models
(Methods S1). Importantly, the relationship between R :S and
both DBH and MWD was nonlinear, as has been observed
previously (Mugasha et al., 2013).

Many of the tested effects were not statistically significant,
presumably because in some instances large variances precluded
detection of true differences, and in others because of the absence
of an effect. Our analysis does suggest that, after accounting for
MWD, variation in R :S did not differ across bioclimatic regions.
We detected no correlation or significant interaction between tree
size and MWD, which suggests that the effects of these two
variables are independent (Methods S1). This is an interesting
contrast with the findings of Bennett et al. (2015), who
determined that larger trees are more vulnerable to drought than
smaller trees: the influence of chronic water deficit (as expressed by
MWD) on R :S apparently does not translate to ability to respond
to episodic drought. Species identity accounted for only 11% of
the variance in R :S, and contrary to previous studies (Mokany

Fig. 2 Plot of loge of individual root : shoot
ratio (R : S) against the mean water deficit
(MWD), where each point corresponds to an
individual value. The green line is the linear
trend and the green shading illustrates� SE.
Please note this is not the actual fitted curve.
Inset right: plot of loge(R : S) against MWD,
where the red points and line correspond to
natural forest and the blue ones to plantations.
Inset left: plot of loge(R : S) against MWD,
where different colours represent different
diameter classes (diameter-at-breast height
(DBH) in centimetres) (see colour codes in the
graph).
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et al., 2006; Reich et al., 2014), groupings of species by phenology
or clade did not explain any additional variation in R :S (Fig. S2),
except that monocotyledons (palms) invest comparatively less
biomass in roots. Species can have widely different root architec-
tures (Lynch, 1995), therefore differences in R :S values across
species are not surprising. After accounting for species, wood
specific gravity was not a significant predictor of R :S. Finally, trees
in plantations had lower R :S than trees in natural forests
(Fig. S2b), although this effect explained only 2% of the variance
in R :S. Plantations are sometimes fertilized, which may result in
lower biomass allocation in belowground tissues in response to the
greater nutrient availability. Moreover, species in plantations are
typically fast-growing and selected for their capacity to produce
aboveground biomass quickly. Finally, plantation trees may be
more sheltered and the structural support of the roots is less
necessary. The remaining 38% of variance that was unexplained
may be due in part to soil fertility, which is known to influence
R :S (Reynolds & D’Antonio, 1996; Poorter et al., 2012). Other
possible sources of variance, not considered due to a lack of data
here, include differences in micro-topography, soil properties,
particular individual conditions like resprouting, and community
structure. Further, differences in methodology for collecting root
data (see Fig. S1(2.3)) among studies may account for some of the
variance.

The main novel finding of this study is that globally, variation in
individual tree R :S is largely dominated by two effects: tree size
and MWD, which largely support our hypothesis. The increase in
R :S in response to increasing climatic water deficit occurs
independently of the size dependence in R :S, which supports
the hypothesis that moisture availability drives global variation in
R :S. With greater aridity, trees invest comparatively more
resources to acquire soil water as it becomes a more limiting
resource for growth and survival, and to provide a belowground
reservoir of stored carbon for rapid regrowth following distur-
bance. Plasticity in R :S has major implications for our under-
standing of the contribution of vegetation to the global carbon
cycle and responses to climatic change. Some parts of the globe are
predicted to experience drying trends, including longer dry seasons,
and an increase in the frequency of extreme events and distur-
bances, while other regions may become wetter or less seasonal
(Moss et al., 2010; Intergovernmental Panel on Climate Change
(IPCC), 2014). Our new results suggest that any change in water
deficit, or in the relative abundance of smaller trees, may result in
shifts in biomass allocation, with far-reaching consequences for the
global carbon budget.
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Additional Supporting Information may be found online in the
Supporting Information tab for this article:

Fig. S1World map with data plots and details on the dataset.

Fig. S2 Boxplot of R :S values for inter-group comparisons.

Methods S1 Extended description of methods, fitted models and
model diagnosis

Notes S1 Dataset used in the study: tree-by-tree root : shoot
dataset; also available in the Figshare achieve doi: 10.6084/m9.f
igshare.5144164.

Notes S2 R code used in the analyses.
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